Advertisement

BIOspektrum

, Volume 23, Issue 2, pp 220–222 | Cite as

Bioelektrokalorimetrie — der mikrobielle elektrochemische Peltier-Effekt

  • Benjamin Korth
  • Thomas Maskow
  • Falk Harnisch
Biotechnologie Elektroaktive Mikroorganismen
  • 41 Downloads

Abstract

Based on the development of bioelectrocalorimetry, allowing the first measurements of heat production of electroactive microorganisms, the microbial electrochemical Peltier effect was discovered. This effect represents an entropic barrier at the interface of an electroactive microorganism and an insoluble electron acceptor during extracellular electron transfer. As for Geobacteraceae based anodes an investment of energy for overcoming this barrier is required, the microbial energy gain is lowered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Harnisch F, Agler-Rosenbaum MG, Greiner A et al. (2016) Wie Mikroorganismen und Elektroden interagieren. Nachr Chem 64:732–737CrossRefGoogle Scholar
  2. [2]
    Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409CrossRefPubMedGoogle Scholar
  3. [3]
    Koch C, Harnisch F (2016) Is there a Specific Ecological Niche for Electroactive Microorganismus? ChemElectroChem 3:1282–1295Google Scholar
  4. [4]
    Pfeffer C, Larsen S, Song J et al. (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221CrossRefPubMedGoogle Scholar
  5. [5]
    Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690CrossRefPubMedGoogle Scholar
  6. [6]
    Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629CrossRefPubMedGoogle Scholar
  7. [7]
    von Stockar U (2010) Biothermodynamics of live cells: a tool for biotechnology and biochemical engineering. J Non-Equil Thermody 35:415–475Google Scholar
  8. [8]
    Maskow T, Paufler S (2015) What does calorimetry and thermodynamics of living cells tell us? Methods 76:3–10CrossRefPubMedGoogle Scholar
  9. [9]
    Korth B, Maskow T, Picioreanu C et al. (2016) The microbial electrochemical Peltier heat: an energetic burden and engineering chance for primary microbial electrochemical technologies. Energy Environ Sci 9:2539–2544CrossRefGoogle Scholar
  10. [10]
    Donepudi VS, Conway BE (1984) Electrochemical calorimetry of the zinc and bromine electrodes in zincbromine and zinc-air batteries. J Electrochem Soc 131:1477–1485CrossRefGoogle Scholar
  11. [11]
    Baudler A, Schmidt I, Langner M et al. (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department UmweltmikrobiologieHelmholtz-Zentrum für Umweltforschung (UFZ)LeipzigDeutschland

Personalised recommendations