, Volume 23, Issue 2, pp 146–149 | Cite as

Künstliche Evolution des genetischen Codes von Mikroorganismen

  • Jan-Stefan Völler
  • Michael Georg Hoesl
  • Nediljko BudisaEmail author
Wissenschaft · Methoden Genetic code engineering


The experimental evolution of microorganisms to highly efficient pro - ducers of biomolecules has a long tradition in industrial biotechnology. Its combination with synthetic biology and xenobiology can be used for the creation of a new, artificial biodiversity. Here, we describe evolution experiments for the development of robust bacterial strains harboring a new chemical composition of their proteomes. These strains might be beneficial for the production of amino acid modified proteins/peptides.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906CrossRefPubMedPubMedCentralGoogle Scholar
  2. [2]
    Mutzel R, Marlière P (2010) Experimentelle Evolution in vivo in kontinuierlicher Suspensionskultur. BIOspektrum 6:660–662Google Scholar
  3. [3]
    Hoesl MG, Oehm S, Durkin P et al. (2015) Chemical evolution of a bacterial proteome. Angew Chem Int Ed Engl 54:10030–10034CrossRefPubMedPubMedCentralGoogle Scholar
  4. [4]
    Agostini F, Völler JS, Koksch B et al. (2017) Xenobiology meets enzymology: exploring the potential of unnatural building blocks in biocatalysis. Angew Chem Int Ed Engl, doi: 10.1002/anie.201610129Google Scholar
  5. [5]
    Baumann T, Nickling JH, Bartholomae M et al. (2017) Prospects of in vivo incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides. Front Microbiol 8:124CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Budisa N (2013) Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Curr Opin Biotechnol 24:591–598CrossRefPubMedGoogle Scholar
  7. [7]
    Kuthning A, Durkin P, Oehm S et al. (2016) Towards biocontained cell factories: an evolutionarily adapted Escherichia coli strain produces a new-to-nature bioactive lantibiotic containing thienopyrrole-alanine. Sci Rep 6:33447CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Wang HH, Isaacs FJ, Carr PA et al. (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472:499–503CrossRefPubMedPubMedCentralGoogle Scholar
  10. [10]
    Budisa N (2014) Xenobiology, new-to-nature synthetic cells and genetic firewall. Curr Org Chem 18:936–943CrossRefGoogle Scholar
  11. [11]
    Mandell DJ, Lajoie MJ, Mee MT et al. (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Rovner AJ, Haimovich AD, Katz SR (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93CrossRefPubMedPubMedCentralGoogle Scholar
  13. [13]
    Acevedo-Rocha CG, Budisa N (2011) On the road towards chemically modified organisms endowed with a genetic firewall. Angew Chem Int Ed Engl 50:6960–6962CrossRefPubMedGoogle Scholar
  14. [14]
    Acevedo-Rocha CG, Budisa N (2016) Xenomicrobiology: a roadmap for genetic code engineering. Microb Biotechnol 9:666–676CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jan-Stefan Völler
    • 1
  • Michael Georg Hoesl
    • 2
  • Nediljko Budisa
    • 1
    Email author
  1. 1.Institut für ChemieTechnische Universität BerlinBerlinDeutschland
  2. 2.Clariant Produkte (Deutschland) GmbHPlaneggDeutschland

Personalised recommendations