, Volume 23, Issue 1, pp 98–100 | Cite as

Hydantoinasen – von der präbiotischen Evolution zur Aminosäureproduktion

Biotechnologie Industrielle Enzyme


The hydantoinase process is used for the large-scale production of optically pure amino acids, with side chains of semisynthetic penicillins as the most prominent products. The origin as well as the natural function of the eponymous enzymes, however, remains unclear to this day. Here we discuss the way of hydantoinases from prebiotic evolution to directed evolution, spanning some billion years from the origin of life to industrial processes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Engel U, Rudat J, Syldatk C (2014) The Hydantoinase Process: Recent developments for the production of non-canonical amino acids. In: Grunwald P (Hrsg) Industrial Biocatalysis (Kap 22). Pan Stanford Publishing Pte. Ltd., SingaporeGoogle Scholar
  2. [2]
    Nelson KE, Metthew L, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci USA 97:3868–3871CrossRefPubMedPubMedCentralGoogle Scholar
  3. [3]
    Parker ET, Cleaves JH, Callahan MP et al. (2011) Prebiotic synthesis of methionine and other sulfur containing organic compounds on the primitive earth. Orig Life Evol Biosph 41:201–212CrossRefPubMedGoogle Scholar
  4. [4]
    Robertson MP, Miller SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774CrossRefPubMedGoogle Scholar
  5. [5]
    Kuszmann J, Márton-Merész M, Jerkovich G (1988) Application of the Bucherer reaction to carbohydrate derivatives. Carbohyd Res 175:249–264CrossRefGoogle Scholar
  6. [6]
    Höss M, Jaruga P, Zastawny TH et al. (1996) DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res 24:1304–1307CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Engel U, Syldatk C, Rudat J (2012) Stereoselective hydrolysis of aryl-substituted dihydropyrimidines by hydantoinases. Appl Microbiol Biotechnol 94:1221CrossRefPubMedGoogle Scholar
  8. [8]
    Syldatk C, May O, Altenbuchner J et al. (1999) Microbial hydantoinases: industrial enzymes from the origin of life? Appl Microbiol Biotechnol 5:293–309CrossRefGoogle Scholar
  9. [9]
    Slomka C, Engel U, Syldatk C et al. (2015) Hydrolysis of hydantoins, dihydropyrimidines and related compounds. In: Faber K, Fessner W-D, Turner NJ (Hrsg) Science of Synthesis: Biocatalysis in Organic Synthesis. Thieme, Stuttgart, S 373–414Google Scholar
  10. [10]
    May O, Nguyen PT, Arnold FH (2000) Inverting enantioselectivity by directed evolution for improved production of L-methionine. Nat Biotech 18:317–320CrossRefGoogle Scholar
  11. [11]
    Arnold FH, May O, Drauz K et al. (2005) Hydantoinase variants with improved properties and their use for the production of amino acids. California Institute of Technology (US), Degussa (DE), Patent EP1165763 B1Google Scholar
  12. [12]
    Slomka C, Zhong S, Fellinger A et al. (2015) Chemical synthesis and enzymatic, stereoselective hydrolysis of a functionalized dihydropyrimidine for the synthesis of β-amino acids. AMB Express 5:85CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut für Bio- und Lebensmitteltechnik Abteilung II: Technische BiologieKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland

Personalised recommendations