BIOspektrum

, Volume 23, Issue 1, pp 28–31 | Cite as

Simulation des Transports durch Außenmembrankanäle

Wissenschaft · Methoden Molekulardynamische Berechnungen

Abstract

Gram-negative bacteria feature an outer and an inner membrane. Especially the outer membrane provides an effective barrier for the entry of noxious substances, though at the same time ions, nutrients, and metabolites need to be able to get inside. Many of these substances either enter through general diffusion or through substrate-specific membrane pores. Over the last years, molecular dynamics simulations have become an extremely valuable tool for understanding the structure-function relationship of membrane transport.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Stavenger RA, Winterhalter M (2014) TRANSLOCATION project–how to get good drugs into bad bugs. Sci Transl Med 6:228ed7CrossRefGoogle Scholar
  2. [2]
    Perilla JR, Goh BC, Cassidy CK et al. (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31, 64–74CrossRefPubMedPubMedCentralGoogle Scholar
  3. [3]
    Pothula KR, Solano CJ, Kleinekathöfer U (2016) Simulations of outer membrane channels and their permeability. Biochim Biophys Acta–Biomembranes 1858:1760–1771CrossRefGoogle Scholar
  4. [4]
    Im W, Roux B (2002) Ion permeation and selectivity of OmpF porin–a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322:851–869CrossRefPubMedGoogle Scholar
  5. [5]
    Pezeshki S, Chimerel C, Bessenov A et al. (2009) Understanding ion conductance on a molecular level–an allatom modeling of the bacterial porin OmpF. Biophys J 97:1898–1906CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Modi N, Ganguly S, Bárcena-Uribarri I et al. (2015) Structure, dynamics, and substrate specificity of the OprO porin from Pseudomonas aeruginosa. Biophys J 109:1429–1438CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Mahendran KR, Hajjar E, Mach T et al. (2010) Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli–when binding does not imply translocation. J Phys Chem B 114:5170–5179CrossRefPubMedGoogle Scholar
  8. [8]
    Singh PR, Ceccarelli M, Lovelle M et al. (2012) Antibiotic permeation across the OmpF channel–modulation of the affinity site in the presence of magnesium. J Phys Chem B 116:4433–4438CrossRefPubMedGoogle Scholar
  9. [9]
    van den Berg B, Bhamidimarri PS, Prajapati DJ et al. (2015) Outer-membrane translocation of bulky small molecules by passive diffusion. Proc Natl Acad Sci USA 112:e2991–E2999CrossRefGoogle Scholar
  10. [10]
    Bhamidimarri SP, Prajapati JD, van den Berg B et al. (2016) Role of electroosmosis in the permeation of neutral molecules–CymA and cyclodextrin as an example. Biophys J 110:600–611CrossRefPubMedPubMedCentralGoogle Scholar
  11. [11]
    Patel DS, Re S, Wu EL et al. (2016) Dynamics and interactions of OmpF and LPS–influence on pore accessibility and ion permeability. Biophys J 110:930–938CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics and Earth SciencesJacobs University BremenBremenGermany

Personalised recommendations