Skip to main content
Log in

Trends in der Genomeditierung für die industrielle Biotechnologie

  • Biotechnologie
  • Mikrobielle Stammentwicklung
  • Published:
BIOspektrum Aims and scope

Abstract

Industrial biotechnology relies on the availability of highly efficient enzymes and production strains for the development of economically viable processes. Recent advances in the field of genome editing will greatly speed up the implementation of desired metabolic pathways and their optimization, thereby facilitating fast and cost-effective production strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Eggeling L, Bott M, Marienhagen J (2015) Novel screening methods–biosensors. Curr Opin Biotechnol 35:30–36

    Article  CAS  PubMed  Google Scholar 

  2. Kubicek CP (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163:133–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    Article  CAS  PubMed  Google Scholar 

  4. Wang HH, Isaacs FJ, Carr PA et al. (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sternberg SH, Redding S, Jinek M et al. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hsu P, Lander E, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Stovicek V, Borodina I, Forster J (2015) CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13–22

    Article  Google Scholar 

  10. Liu R, Chen L, Jiang Y et al. (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  Google Scholar 

  11. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas System. ACS Synth Biol 4:723–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Reis A, Hornblower B, Robb B et al. (2014) CRISPR/Cas9 and targeted genome editing: a new era in molecular biology. NEB Expressions 1:3–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Haarmann.

Additional information

Bastian Blombach, Kathrin Castiglione, Thomas Haarmann und Jochen Schmid (v. l. n. r.) Alle Autoren sind Mitglieder des Zukunftsforums der DECHEMA, in dessen Rahmen diese Publikation verfasst wurde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blombach, B., Castiglione, K., Haarmann, T. et al. Trends in der Genomeditierung für die industrielle Biotechnologie. Biospektrum 21, 788–790 (2015). https://doi.org/10.1007/s12268-015-0645-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-015-0645-0

Navigation