Advertisement

BIOspektrum

, Volume 21, Issue 6, pp 592–596 | Cite as

Gemeinsam stärker: metabolische Arbeitsteilung bei Bakterien

  • Christian Kost
Wissenschaft Mikrobielle Interaktionen

Abstract

Microorganisms frequently engage in reciprocal cross-feeding interactions, in which two or more bacterial strains exchange essential metabolites. Benefits stemming from losing the biosynthetic capabilities to produce certain metabolites likely drive the emergence of these metabolic interdependencies. By using nanotubes, bacteria can effectively exchange nutrients with other cells and – in this way – divide metabolic functions within microbial communities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Morris BE, Henneberger R, Huber H et al. (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37:384–406CrossRefPubMedGoogle Scholar
  2. [2]
    Rosenzweig RF, Sharp RR, Treves DS et al. (1994) Microbial evolution in a simple unstructured environment–genetic differentiation in Escherichia coli. Genetics 137:903–917PubMedCentralPubMedGoogle Scholar
  3. [3]
    Pande S, Merker H, Bohl K et al. (2014) Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8:953–962PubMedCentralCrossRefPubMedGoogle Scholar
  4. [4]
    Pande S, Shitut S, Freund L et al. (2015) Metabolic crossfeeding via intercellular nanotubes among bacteria. Nat Commun 6:6238CrossRefPubMedGoogle Scholar
  5. [5]
    Phelan VV, Liu W-T, Pogliano K et al. (2012) Microbial metabolic exchange–the chemotype-to-phenotype link. Nat Chem Biol 8:26–35CrossRefGoogle Scholar
  6. [6]
    Mee MT, Collins JJ, Church GM et al. (2014) Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA 111:E2149–E2156PubMedCentralCrossRefPubMedGoogle Scholar
  7. [7]
    D’Souza G, Waschina S, Pande S et al. (2014) Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68:2559–2570CrossRefPubMedGoogle Scholar
  8. [8]
    Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. Mbio 3:e00036–12PubMedCentralCrossRefPubMedGoogle Scholar
  9. [9]
    Paczia N, Nilgen A, Lehmann T et al. (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Fact 11:122PubMedCentralCrossRefPubMedGoogle Scholar
  10. [10]
    Hillesland KL, Stahl DA (2010) Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc Natl Acad Sci USA 107:2124–2129PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Forschergruppe Experimentelle Ökologie und Evolution Abteilung für Bioorganische ChemieMax-Planck-Institut für chemische Ökologie Beutenberg CampusJenaDeutschland

Personalised recommendations