Advertisement

BIOspektrum

, Volume 21, Issue 4, pp 382–384 | Cite as

Analyse des „Ubiquitin-Codes“ mithilfe Protease-resistenter Ubiquitinketten

  • Tatjana Schneider
  • Daniel Schneider
  • Andreas MarxEmail author
  • Martin ScheffnerEmail author
Wissenschaft · Methoden Bioorthogonale Reaktionen
  • 52 Downloads

Abstract

Modification of proteins by ubiquitin plays a fundamental role in maintaining a functional proteome. Proteins can be modified by single ubiquitin moieties or by various types of ubiquitin chains differing in linkage type and topology. Different ubiquitin chains are assumed to signal target proteins for different fates, but how this is achieved is only partially understood. We developed an easy-to-use strategy to generate large amounts of linkage-defined, non-hydrolyzable ubiquitin chains and show their potential to dissect ubiquitin signalling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229CrossRefGoogle Scholar
  2. [2]
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  3. [3]
    Spasser L, Brik A (2012) Chemistry and biology of the ubiquitin signal. Angew Chem Int Ed 51:6840–6862CrossRefGoogle Scholar
  4. [4]
    Ciechanover A (2003) The ubiquitin proteolytic systemand pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochem Soc Trans 31:474–481PubMedCrossRefGoogle Scholar
  5. [5]
    Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83PubMedCrossRefGoogle Scholar
  6. [6]
    Thrower JS, Hoffman L, Rechsteiner M et al. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102PubMedCentralPubMedCrossRefGoogle Scholar
  7. [7]
    Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322PubMedCrossRefGoogle Scholar
  8. [8]
    Hemantha HP, Brik A (2013) Non-enzymatic synthesis of ubiquitin chains: where chemistry makes a difference. Bioorg Med Chem 21:3411–3420PubMedCrossRefGoogle Scholar
  9. [9]
    Schneider D, Schneider T, Rösner D et al. (2013) Improving bioorthogonal protein ubiquitylation by click reaction. BioorgMed Chem 21:3430–3435CrossRefGoogle Scholar
  10. [10]
    Schneider T, Schneider D, Rösner D et al. (2014) Dissecting ubiquitin signaling with linkage-defined and protease resistant ubiquitin chains. Angew Chem Int Ed 53:12925–12929CrossRefGoogle Scholar
  11. [11]
    Rape M (2010) Assembly of k11-linked ubiquitin chains by the anaphase-promoting complex. Subcell Biochem 54:107–115PubMedGoogle Scholar
  12. [12]
    Rauh NR, Schmidt A, Bormann J et al. (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437:1048–1052PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fachbereiche Chemie und BiologieUniversität KonstanzKonstanzDeutschland

Personalised recommendations