BIOspektrum

, Volume 21, Issue 1, pp 28–29

Schlüsseltechnologie der Lebenswissenschaften

20 Jahre BIOspektrum · Highlights Aus Der Wissenschaft Mikrobielle Genomforschung
  • 48 Downloads

Abstract

Functional microbial genomics has revolutionized the life sciences. Next-generation sequencing technologies in combination with other omics-based approaches and sophisticated bioinformatic tools already allow comprehensive analyses of structure, functions, dynamics, activity, and interactions of individual microbes and entire microbial communities, and has therefore fostered important advances in microbiology and biotechnology.

Literatur

  1. [1]
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefPubMedCentralPubMedGoogle Scholar
  2. [2]
    Fleischmann RD, Adams MD, White O et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefPubMedGoogle Scholar
  3. [3]
    Kunst F, Ogasawata N, Moszer I et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256CrossRefPubMedGoogle Scholar
  4. [4]
    Blattner FR, Plunkett G, Bloch CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474CrossRefPubMedGoogle Scholar
  5. [5]
    Venter JC Remington K, Heidelberg JF et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74CrossRefGoogle Scholar
  6. [6]
    Thürmer A (2014) Next Generation Sequencing in der mikrobiellen (Meta)Genomforschung. BIOspektrum 2:168–171CrossRefGoogle Scholar
  7. [7]
    Brzuszkiewicz E, Thürmer A, Schuldes J et al. (2011) Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch Microbiol 193:883–891CrossRefPubMedCentralPubMedGoogle Scholar
  8. [8]
    Rohde H, Qin J, Cui Y et al. (2011) E. coli O104:H4 Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365:718–724CrossRefPubMedGoogle Scholar
  9. [9]
    Voget S, Wemheuer B, Brinkhoff T et al. (2014) Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J, doi: 10.1038/ismej.2014.134 Google Scholar
  10. [10]
    Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221CrossRefGoogle Scholar
  11. [11]
    Qin J, Li R, Raes J et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedCentralPubMedGoogle Scholar
  12. [12]
    Turnbaugh PJ, Ley RE, Mahowald MA et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für Mikrobiologie und GenetikGeorg-August-Universität GöttingenGöttingenDeutschland

Personalised recommendations