, Volume 20, Issue 5, pp 494–496 | Cite as

Metatranskriptomik der Mikrobiota aus der menschlichen Achselhöhle

  • Eugenie Fredrich
  • Christina Ander
  • Jens Stoye
  • Iris Brune
  • Andreas TauchEmail author
Wissenschaft Humanes Mikrobiom


Axillary malodor is formed in a biotransformation of initially odorless sweat components by members of the human skin microbiota. Metatranscriptomics of the human armpit microbiota allows for the analysis of the active microbial community on taxonomical and functional levels. Taxonomic profiles of the active axillary microbiota of three males revealed an unexpected diversity of staphylococci and corynebacteria probably contributing to body odor formation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Leyden JJ, McGinley KJ, Hoelzle K et al. (1981) The microbiology of the human axillae and its relation to axillary odors. J Invest Dermatol 77:413–416PubMedCrossRefGoogle Scholar
  2. [2]
    Barzantny H, Brune I, Tauch A (2011) Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmet Sci 34:2–11PubMedCrossRefGoogle Scholar
  3. [3]
    Taylor D, Daulby A, Grimshaw S et al. (2003) Characterization of the microflora of the human axilla. Int J Cosmet Sci 25:137–145PubMedCrossRefGoogle Scholar
  4. [4]
    Grice EA, Kong HH, Conlan S et al. (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192PubMedCentralPubMedCrossRefGoogle Scholar
  5. [5]
    Costello EK, Lauber CL, Hamady M et al. (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697PubMedCentralPubMedCrossRefGoogle Scholar
  6. [6]
    Fredrich E, Barzantny H, Brune I et al. (2013) Daily battle agains body odor: towards the activity ofthe axillary microbiota. Trends Microbiol 21:305–312PubMedCrossRefGoogle Scholar
  7. [7]
    Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 4:329–335Google Scholar
  8. [8]
    Ghodsi M, Liu B, Pop M (2011) DNACLUST: accurate and efficient clustering of phylogenetic marker genes. BMC Bioinformatics 12:271PubMedCentralPubMedCrossRefGoogle Scholar
  9. [9]
    Quast C, Pruesse E, Yilmatz P et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596PubMedCentralPubMedCrossRefGoogle Scholar
  10. [10]
    Altschul SF, Gish W, Miller W (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  11. [11]
    Wang Q, Garrity GM, Tiedje JM et al. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eugenie Fredrich
    • 1
  • Christina Ander
    • 1
  • Jens Stoye
    • 1
  • Iris Brune
    • 1
  • Andreas Tauch
    • 1
    Email author
  1. 1.Centrum für Biotechnologie (CeBiTec) und Technische FakultätUniversität BielefeldBielefeldDeutschland

Personalised recommendations