, Volume 19, Issue 5, pp 523–526 | Cite as

Automatisierte Kultivierung von induziert pluripotenten Stammzellen

  • Ina Meiser
  • Isabelle Sébastien
  • Julia C. NeubauerEmail author
Wissenschaft · Special: Laborautomation Zellkultur-Automatisierung


The groundbreaking discovery that pluripotency can be induced in somatic cells opened new fields in sciences. Generation of patient- and disease-specific cell lines for drug screening and medical research is in reach. However, the numerous possibilities are limited by the amount of cells needed, that cannot be supplied by state-of-the-art cultivation techniques. New approaches for cell culture automation are wanted, mapping the requirements for this interesting, yet sophisticated cell type.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  2. [2]
    Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640PubMedGoogle Scholar
  3. [3]
    Itzhaki I, Maizels L, Huber I et al. (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229PubMedCrossRefGoogle Scholar
  4. [4]
    Tabar V, Tomishima M, Panagiotakos G et al. (2008) Therapeutic cloning in individual parkinsonian mice. Nat Med 14:379–381PubMedCrossRefGoogle Scholar
  5. [5]
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  6. [6]
    Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305PubMedCrossRefGoogle Scholar
  7. [7]
    Das AK, Pal R (2010) Induced pluripotent stem cells (iPSCs): the emergence of a new champion in stem cell technology-driven biomedical applications. J Tissue Eng Regen Med 4:413–421PubMedGoogle Scholar
  8. [8]
    Shafa M, Sjonnesen K, Yamashita A et al. (2012) Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med 6:462–472PubMedCrossRefGoogle Scholar
  9. [9]
    Schutz A, Koch S, Fuss M et al. (2012) An automated HIV-1 Env-pseudotyped virus production for global HIV vaccine trails. PLoS One 7:e51715CrossRefGoogle Scholar
  10. [10]
    Schulz JC, Stumpf PS, Katsen-Globa A et al. (2012) First steps towards the successful surface-based cultivation of human embryonic stem cells in hanging drop systems. Eng Life Sci 12:584–587PubMedCrossRefGoogle Scholar
  11. [11]
    Boheler KR, Czyz J, Tweedie D et al. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189–201PubMedCrossRefGoogle Scholar
  12. [12]
    Pera MF (2011) Stem cells: the dark side of induced pluripotency. Nature 471:46–47PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ina Meiser
    • 1
  • Isabelle Sébastien
    • 1
  • Julia C. Neubauer
    • 1
    • 2
    Email author
  1. 1.Hauptabteilung Biophysik & KryotechnologieFraunhofer-Institut für Biomedizinische TechnikSt. IngbertDeutschland
  2. 2.Fraunhofer-Institut für Biomedizinische Technik (IBMT)St. IngbertDeutschland

Personalised recommendations