, Volume 18, Issue 6, pp 582–584 | Cite as

Mikrobielle Ökologie des Roten Meeres

  • Uli StinglEmail author
  • David Kamanda Ngugi
  • Luke Thompson
  • Andre Antunes
  • Matthew Cahill
Wissenschaft Marine Mikrobiologie


The Red Sea is an unusually harsh marine environment, characterized by high temperature and salinity. It also harbors some of the most extreme environments on earth, the Deep Sea Brine Pools. Here, we report on the microbial communities in these environments. The water column is dominated by SAR11 and Prochlorococcus, which have developed specific adaptations to withstand the conditions. The Brine Pools have only been poorly characterized so far, and only four pure cultures are described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ngugi DK, Antunes A, Brune A et al. (2012) Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea. Mol Ecol 21:388–405PubMedCrossRefGoogle Scholar
  2. [2]
    Morris RM, Rappé MS, Connon SA et al. (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810PubMedCrossRefGoogle Scholar
  3. [3]
    Rappé MS, Connon SA, Vergin KL et al. (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  4. [4]
    Giovannoni SJ, Tripp HJ, Givan S et al. (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245PubMedCrossRefGoogle Scholar
  5. [5]
    Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433CrossRefGoogle Scholar
  6. [6]
    Bertram C, Krätschell A, OO’Brien KK et al. (2011) Metalliferous sediments in the Atlantis II Deep — assessing the geological and economic resource potential and legal constraints. Resour Policy 36:315–329CrossRefGoogle Scholar
  7. [7]
    Wang Y, Yang J, Lee OO et al. (2011) Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. ISME J 5:1652–1659PubMedCrossRefGoogle Scholar
  8. [8]
    Eder W, Schmidt M, Koch M et al. (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763PubMedCrossRefGoogle Scholar
  9. [9]
    Eder W, Jahnke LL, Schmidt M et al. (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085PubMedCrossRefGoogle Scholar
  10. [10]
    Antunes A, Alam I, El Dorry H et al. (2011) Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake. J Bacteriol 193:4551–4552PubMedCrossRefGoogle Scholar
  11. [11]
    Antunes A, Alam I, Bajic VB et al. (2011) Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake. J Bacteriol 193:4553–4554PubMedCrossRefGoogle Scholar
  12. [12]
    Antunes A, Alam I, Bajic VB et al. (2011) Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine-seawater interface of the Shaban Deep in the Red Sea. J Bacteriol 193:4555–4556PubMedCrossRefGoogle Scholar
  13. [13]
    Antunes A, Rainey FA, Wanner G et al. (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Uli Stingl
    • 1
    • 2
    Email author
  • David Kamanda Ngugi
    • 1
  • Luke Thompson
    • 1
  • Andre Antunes
    • 1
  • Matthew Cahill
    • 1
  1. 1.Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)Thuwal/JeddahSaudi-Arabien
  2. 2.Marine Microbial Ecology GroupRed Sea Research CenterThuwal/JeddahSaudi-Arabien

Personalised recommendations