BIOspektrum

, Volume 18, Issue 5, pp 493–496 | Cite as

Analyse eines unkonventionellen Vitamin-Transporters

Wissenschaft · Methoden FRET in lebenden Bakterien

Abstract

Förster resonance energy transfer (FRET) identifies the co-localization of fluorescent macromolecules on a nanometer scale. FRET between nonidentical and identical fluorophores is called HeteroFRET or HomoFRET, respectively. We applied FRET techniques to analyze the oligomeric state of the core component (BioY) of a bacterial biotin transporter. BioY was fused to fluorescent proteins suitable for Hetero- and HomoFRET analyses. Spectrometric and imaging experiments with living cells strongly support a model with oligomers of BioY as the functional state of the core unit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Rodionov DA, Hebbeln P, Eudes A et al. (2009) A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191:42–51PubMedCrossRefGoogle Scholar
  2. [2]
    Eitinger T, Rodionov DA, Grote M et al. (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67PubMedCrossRefGoogle Scholar
  3. [3]
    Erkens GB, Majsnerowska M, Ter Beek J et al. (2012) Energy coupling factor-type ABC transporters for vitamin uptake in prokaryotes. Biochemistry 51:4390–4396CrossRefGoogle Scholar
  4. [4]
    Neubauer O, Reiffler C, Behrendt L et al. (2011) Interactions among the A and T units of an ECF-type biotin transporter analyzed by site-specific crosslinking. PLoS One 6:e29087PubMedCrossRefGoogle Scholar
  5. [5]
    Henderson GB, Zevely EM, Huennekens FM (1979) Mechanism of folate transport in Lactobacillus casei: evidence for a component shared with the thiamine and biotin transport systems. J Bacteriol 137:1308–1314PubMedGoogle Scholar
  6. [6]
    Zhang P, Wang J, Shi Y (2010) Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468:717–720PubMedCrossRefGoogle Scholar
  7. [7]
    Erkens GB, Berntsson RP, Fulyani F et al. (2011) The structural basis of modularity in ECF-type ABC transporters. Nat Struct Mol Biol 18:755–760PubMedCrossRefGoogle Scholar
  8. [8]
    Hebbeln P, Rodionov DA, Alfandega A et al. (2007) Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci USA 104:2909–2914PubMedCrossRefGoogle Scholar
  9. [9]
    Kirsch F, Frielingsdorf S, Pohlmann A et al. (2012) Essential amino acid residues of BioY reveal that dimers are the functional S unit of the Rhodobacter capsulatus biotin transporter. J Bacteriol 194 (im Druck), doi: 10.1128/JB.00683-12Google Scholar
  10. [10]
    Finkenwirth F, Neubauer O, Gunzenhäuser J et al. (2010) Subunit composition of an energy-coupling-factor-type biotin transporter analysed in living bacteria. Biochem J 431:373–380PubMedGoogle Scholar
  11. [11]
    Grecco HE, Verveer PJ (2011) FRET in cell biology: still shining in the age of super-resolution? ChemPhysChem 12:484–490PubMedCrossRefGoogle Scholar
  12. [12]
    Bader AN, Hoetzl EG, Hofman J et al. (2011) Homo-FRET imaging as a tool to quantify protein and lipid clustering. ChemPhysChem 12:475–483PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut für Biologie/Molekulare BiophysikHu BerlinBerlinGermany
  2. 2.Institut für Biologie/MikrobiologieHu BerlinBerlinGermany
  3. 3.Institut für Biologie/Molekulare BiophysikHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Institut für Biologie/MikrobiologieHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations