, Volume 18, Issue 4, pp 365–368 | Cite as

Beinentwicklung und Gliedmaßen-Evolution bei Spinnen

Evolution von Entwicklungsmechanismen
  • Matthias Pechmann
  • Sara Khadjeh
  • Natascha Turetzek
  • Nikola-Michael Prpic


The amazing biology of arthropods, their diversity in lifestyle and behaviour, is largely based on evolutionary adaptations of their appendages. Our studies on spiders provide insight into the evolution of this diversity of appendage morphology and also answer the question why spiders have (only) eight legs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kojima T (2004) The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ 46:115–129PubMedCrossRefGoogle Scholar
  2. [2]
    Lecuit T, Cohen SM (1997) Proximal-distal axis formation in the Drosophila leg. Nature 388:139–145PubMedCrossRefGoogle Scholar
  3. [3]
    Gonzalez-Crespo S, Abu-Shaar M, Torres M et al. (1998) Antagonism between extradenticle function and Hedgehog signalling in the developing limb. Nature 394:196–200PubMedCrossRefGoogle Scholar
  4. [4]
    Prpic NM, Janssen R, Wigand B et al. (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140PubMedCrossRefGoogle Scholar
  5. [5]
    Prpic NM, Damen WGM (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302PubMedCrossRefGoogle Scholar
  6. [6]
    Prpic NM, Damen WGM (2008) Arthropod appendages: a prime example for the evolution of morphological diversity and innovation. In: Minelli A, Fusco G (Hrsg) Evolving Pathways: Key Themes in Evolutionary Developmental Biology. Cambridge University Press, Cambridge. 381–398CrossRefGoogle Scholar
  7. [7]
    Janssen R, Feitosa NM, Damen WGM et al. (2008) The Tbox genes H15 and optomotor-blind in the spiders Cupiennius salei, Tegenaria atrica and Achaearanea tepidariorum and the dorso-ventral axis of arthropod appendages. Evol Dev 10:143–154PubMedCrossRefGoogle Scholar
  8. [8]
    Prpic NM, Damen WGM (2009) Notch-mediated segmentation of the appendages is a molecular phylotypic trait of the arthropods. Dev Biol 326:262–271PubMedCrossRefGoogle Scholar
  9. [9]
    Hughes CL, Kaufman TC (2002) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499PubMedCrossRefGoogle Scholar
  10. [10]
    Khadjeh S, Turetzek N, Pechmann M et al. (2012) Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci USA 109:4921–4926PubMedCrossRefGoogle Scholar
  11. [11]
    Pechmann M, Khadjeh S, Turetzek N et al. (2011) Novel function of Distal-less as a gap gene during spider segmentation. PLoS Genet 7:e1002342PubMedCrossRefGoogle Scholar
  12. [12]
    Pechmann M, Prpic NM (2009) Appendage patterning in the South American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol 219:189–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Matthias Pechmann
    • 1
  • Sara Khadjeh
    • 1
  • Natascha Turetzek
    • 1
  • Nikola-Michael Prpic
    • 1
    • 2
  1. 1.Johann-Friedrich-Blumenbach-Institut und Göttinger Zentrum für Molekulare Biowissenschaften, Universität GöttingenGöttingenGermany
  2. 2.Göttinger Zentrum für Molekulare Biowissenschaften, Ernst-Caspari-HausGeorg-August-Universität Göttingen Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für EntwicklungsbiologieGöttingenGermany

Personalised recommendations