BIOspektrum

, Volume 17, Issue 7, pp 769–772 | Cite as

Hochauflösende Einzelmolekülanalyse mit Nanoporen-Arrays

Wissenschaft · Special: Molekulare Diagnostik Nanoporenanalytik
  • 55 Downloads

Zusammenfassung

Ein Array aus einzelnen individuell elektrisch kontaktierten biologischen Nanoporen in synthetischen Lipidmembranen erlaubt die parallele Detektion einzelner Moleküle in wässrigen Lösungen. Die hohe Auflösung der Messungen wird beim Einsatz zur präzisen Bestimmung der Massenverteilung von Polymeren deutlich.

Abstract

A chip array in which single biological nanopores in synthetic lipid membranes are electrically contacted individually allows parallel single molecule detection in aqueous solution. The high resolution of the measurements is shown in an application to precisely determine the distribution of polymer masses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Majd S, Yusko EC, Billeh YN et al. (2010) Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 21:439–476PubMedCrossRefGoogle Scholar
  2. [2]
    Kasianowicz JJ, Robertson JWF, Chan ER et al. (2008) Nanoscopic porous sensors. Annu Rev Anal Chem 1:737–766CrossRefGoogle Scholar
  3. [3]
    Muthukumar M (2011) Polymer Translocation. CRC Press, New YorkCrossRefGoogle Scholar
  4. [4]
    Derrington IM, Butler TZ, Collins MD et al. (2010) Nanopore DNA sequencing with Mspa. Proc Natl Acad Sci USA 107:16060–16065PubMedCrossRefGoogle Scholar
  5. [5]
    Dunlop J, Bowlby M, Peri R et al. (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368PubMedCrossRefGoogle Scholar
  6. [6]
    Behrends JC, Fertig N (2007) Planar Patch Clamping. In: Walz, W (Hrsg) Patch-Clamp Analysis: Advanced Techniques. 2. Aufl., Humana Press, Totowa, NJ. 411–433CrossRefGoogle Scholar
  7. [7]
    Demarche S, Sugihara K, Zambelli T et al. (2011) Techniques for recording reconstituted ion channels. The Analyst 136:1077PubMedCrossRefGoogle Scholar
  8. [8]
    Astier Y, Bayley H, Howorka S (2005) Protein components for nanodevices. Curr Opin Chem Biol 9:576–584PubMedCrossRefGoogle Scholar
  9. [9]
    Baaken G, Ankri N, Schuler A-K et al. (2011) Nanoporebased single-molecule mass spectrometry on a lipid membrane microarray. ACS Nano 5:8080–8088PubMedCrossRefGoogle Scholar
  10. [10]
    Baaken G, Sondermann M, Schlemmer C et al. (2008) Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8:938–944PubMedCrossRefGoogle Scholar
  11. [11]
    Renner S, Bessonov A, Simmel FC (2011) Voltage-controlled insertion of single á-hemolysin and Mycobacterium smegmatis nanopores into lipid bilayer membranes. Appl Phys Lett 98:083701CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Physiologisches InstitutUniversität FreiburgFreiburgGermany
  2. 2.Institut für Mikrosystemtechnik (IMTEK)Universität FreiburgFreiburgGermany
  3. 3.Freiburger Zentrum für Materialforschung (FMF)FreiburgGermany
  4. 4.Physiologisches InstitutUniversität FreiburgFreiburg i. Br.Germany

Personalised recommendations