BIOspektrum

, Volume 17, Issue 3, pp 281–283 | Cite as

Diversität asymmetrischer Thiamin-Katalyse

Wissenschaft Biokatalyse

Zusammenfassung

Thiamindiphosphat, die biologisch aktive Form von Vitamin B1, nimmt als Kofaktor eine bedeutende Rolle ein. Die Aufklärung des Katalysemechanismus und der Struktur-Funktionsbeziehungen dieser Enzyme stellen zentrale Ziele der DFG-Forschergruppe 1296 dar.

Abstract

Thiamine diphosphate, the active form of vitamin B1, serves as a key cofactor in all forms of life. Elucidation of catalytic mechanisms and structure-function relationships of these enzymes are in the focus of the DFG Research Unit FOR 1296.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Duggleby RG (2006) Domain relationships in thiamine diphosphate-dependent enzymes. Acc Chem Res 39:550–557PubMedCrossRefGoogle Scholar
  2. [2]
    Tittmann K, Golbik R, Uhlemann K et al. (2003) NMR Analysis of Covalent Intermediates in Thiamin Diphosphate Enzymes. Biochemistry 42:7885–7891PubMedCrossRefGoogle Scholar
  3. [3]
    Costelloe SJ, Ward JM, Dalby PA (2008) Evolution of the TPP-dependent enzyme family. J Mol Evol 66:36–49PubMedCrossRefGoogle Scholar
  4. [4]
    Müller YA, Lindqvist Y, Furey W et al. (1993) A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure 1:95–103PubMedCrossRefGoogle Scholar
  5. [5]
    Frank RA, Leeper FJ, Luisi BF (2007) Structure, mechanism, and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 64:892–905PubMedCrossRefGoogle Scholar
  6. [6]
    Pohl M, Sprenger GA, Müller M (2004) A new perspective on thiamine catalysis. Curr Opin Biotechnol 15:335–342PubMedCrossRefGoogle Scholar
  7. [7]
    Lingen B, Kolter-Jung D, Dünkelmann P et al. (2003) Alteration of the Substrate Specificity of Benzoylformate Decarboxylase from Ps. Putida by Directed Evolution. Chembiochem 4:721–726PubMedCrossRefGoogle Scholar
  8. [8]
    Gocke D, Walter L, Gauchenova E et al. (2008) Rational Protein Design of ThDP-Dependent Enzymes — Engineering Stereoselectivity. Chembiochem 9:406–412PubMedCrossRefGoogle Scholar
  9. [9]
    Widmann M, Radloff R, Pleiss J (2010) The Thiamine diphosphate dependent Enzyme Engineering Database: A tool for the systematic analysis of sequence and structure relations. BMC Biochem 11:9PubMedCrossRefGoogle Scholar
  10. [10]
    Berthold CL, Gocke D, Wood MD et al. (2007) Crystal structure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis provides insights into the structural basis for the chemo- and enantioselective carboligation reaction. Acta Crystallogr D Biol Crystallogr 63:1217–1224PubMedCrossRefGoogle Scholar
  11. [11]
    Kurutsch A, Richter M, Brecht V et al. (2009) MenD as a versatile catalyst for asymmetric synthesis. J Mol Catal B Enzym 61:56–66CrossRefGoogle Scholar
  12. [12]
    O’Toole SE, Rose CA, Gundala S et al. (2011) Highly Chemoselektive Direct Crossed Aliphatic-Aromatic Acyloin Condensations with Triazolium-Derived Carbene Catalysts. J Org Chem 76:347–357PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für Pharmazeutische WissenschaftenUniversität FreiburgFreiburgGermany
  2. 2.Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations