Inhibition of MicroRNA-206 Ameliorates Ischemia–Reperfusion Arrhythmia in a Mouse Model by Targeting Connexin43

  • Yan Jin
  • Tianyi Zhou
  • Qiuting Feng
  • Jun Yang
  • Jianing Cao
  • Xin Xu
  • Chengjian YangEmail author
Original Article


Reperfusion arrhythmias (RA) are an important cause of sudden cardiac death and is closely associated with gap junction protein in the heart, connexin 43 (Cx43). This study is aimed at elucidating the molecular association between microRNA-206 (miR-206) and Cx43 in ischemia-reperfusion arrhythmia using experimental animal model. Our results showed that miR-206 inhibitor alleviated ischemia-reperfusion–induced arrhythmias, indicated by the lower extent of changes in heart rate (HR), PR interval, rate pressure product (RPP), and mean arterial pressure (MAP). miR-206 inhibitor also downregulated the serum creatine kinase isoenzyme (CKMB) and cardiac troponin I (cTnI) levels in mice under myocardial ischemia-reperfusion (IR) process. The knockdown of Cx43 inversed the protective effects of miR-206 inhibitor on cardiac arrhythmias. These results supported that inhibition of miR-206 ameliorates ischemia-reperfusion arrhythmia by targeting Cx43, and this miR-206/Cx43 axis could serve as a potential target for the management of ischemic-perfusion arrhythmia.


Cardiac arrhythmias Ischemia-reperfusion Gap junction miR-206 Connexin 43 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Not applicable.

Supplementary material

12265_2019_9940_MOESM1_ESM.docx (304 kb)
ESM 1 (DOCX 303 kb)


  1. 1.
    Adams 3rd, J. E., Bodor, G. S., Davila-Roman, V. G., Delmez, J. A., Apple, F. S., Ladenson, J. H., & Jaffe, A. S. (1993). Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation, 88, 101–106.CrossRefGoogle Scholar
  2. 2.
    Agullo-Pascual, E., Lin, X., Leo-Macias, A., Zhang, M., Liang, F. X., Li, Z., Pfenniger, A., Lubkemeier, I., Keegan, S., Fenyo, D., Willecke, K., Rothenberg, E., & Delmar, M. (2014). Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovascular Research, 104, 371–381. Scholar
  3. 3.
    Beardslee, M. A., Lerner, D. L., Tadros, P. N., Laing, J. G., Beyer, E. C., Yamada, K. A., Kleber, A. G., Schuessler, R. B., & Saffitz, J. E. (2000). Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circulation Research, 87, 656–662.CrossRefGoogle Scholar
  4. 4.
    Bian, B., Yu, X., Wang, Q., Teng, T., & Nie, J. (2015). Atorvastatin protects myocardium against ischemia-reperfusion arrhythmia by increasing connexin 43 expression: a rat model. European Journal of Pharmacology, 768, 13–20. Scholar
  5. 5.
    Bian, B., Yu, X. F., Wang, G. Q., & Teng, T. M. (2017). Role of miRNA-1 in regulating connexin 43 in ischemia-reperfusion heart injury: a rat model. Cardiovascular Pathology, 27, 37–42. Scholar
  6. 6.
    Clarkson PM (2007) Exertional rhabdomyolysis and acute renal failure in marathon runners. Sports medicine (Auckland, NZ) 37:361-363. doi: Scholar
  7. 7.
    Curtis, M. J., & Walker, M. J. (1988). Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovascular Research, 22, 656–665.CrossRefGoogle Scholar
  8. 8.
    Epifantseva, I., & Shaw, R. M. (2018). Intracellular trafficking pathways of Cx43 gap junction channels. Biochimica et Biophysica Acta, Biomembranes, 1860, 40–47. Scholar
  9. 9.
    Galinska, A., Hatch, V., Craig, R., Murphy, A. M., Van Eyk, J. E., Wang, C. L., Lehman, W., & Foster, D. B. (2010). The C terminus of cardiac troponin I stabilizes the Ca2+-activated state of tropomyosin on actin filaments. Circulation Research, 106, 705–711. Scholar
  10. 10.
    Gutstein, D. E., Morley, G. E., Tamaddon, H., Vaidya, D., Schneider, M. D., Chen, J., Chien, K. R., Stuhlmann, H., & Fishman, G. I. (2001). Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circulation Research, 88, 333–339.CrossRefGoogle Scholar
  11. 11.
    Jansen, J. A., Noorman, M., Musa, H., Stein, M., de Jong, S., van der Nagel, R., Hund, T. J., Mohler, P. J., Vos, M. A., van Veen, T. A., de Bakker, J. M., Delmar, M., & van Rijen, H. V. (2012). Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm, 9, 600–607. Scholar
  12. 12.
    Jin, Y., Zhou, T. Y., Cao, J. N., Feng, Q. T., Fu, Y. J., Xu, X., & Yang, C. J. (2018). MicroRNA-206 downregulates connexin43 in cardiomyocytes to induce cardiac arrhythmias in a transgenic mouse model. Heart, Lung & Circulation. Scholar
  13. 13.
    Kong, F., Jin, J., Lv, X., Han, Y., Liang, X., Gao, Y., & Duan, X. (2019). Long noncoding RNA RMRP upregulation aggravates myocardial ischemia-reperfusion injury by sponging miR-206 to target ATG3 expression. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 109, 716–725. Scholar
  14. 14.
    Li, W. C., Gao, H., Gao, J., & Wang, Z. J. (2019). Antiarrhythmic effect of sevoflurane as an additive to HTK solution on reperfusion arrhythmias induced by hypothermia and ischaemia is associated with the phosphorylation of connexin 43 at serine 368. BMC Anesthesiology, 19, 5. Scholar
  15. 15.
    Limana, F., Esposito, G., D’Arcangelo, D., Di Carlo, A., Romani, S., Melillo, G., Mangoni, A., Bertolami, C., Pompilio, G., Germani, A., & Capogrossi, M. C. (2011). HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3. PLoS One, 6, e19845. Scholar
  16. 16.
    Lubkemeier, I., Requardt, R. P., Lin, X., Sasse, P., Andrie, R., Schrickel, J. W., Chkourko, H., Bukauskas, F. F., Kim, J. S., Frank, M., Malan, D., Zhang, J., Wirth, A., Dobrowolski, R., Mohler, P. J., Offermanns, S., Fleischmann, B. K., Delmar, M., & Willecke, K. (2013). Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels. Basic Research in Cardiology, 108, 348. Scholar
  17. 17.
    Maass, K., Chase, S. E., Lin, X., & Delmar, M. (2009). Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovascular Research, 84, 361–367. Scholar
  18. 18.
    Manning, A. S., & Hearse, D. J. (1984). Reperfusion-induced arrhythmias: mechanisms and prevention. Journal of Molecular and Cellular Cardiology, 16, 497–518.CrossRefGoogle Scholar
  19. 19.
    Moens, A. L., Claeys, M. J., Timmermans, J. P., & Vrints, C. J. (2005). Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology, 100, 179–190. Scholar
  20. 20.
    Myerburg, R. J. C. A. (1997). Cardiac arrest and sudden cardiac death. In B. E (Ed.), Heart disease: a textbook of cardiovascular medicine (pp. 742–749). New York: WB Saunders Publishing Co.Google Scholar
  21. 21.
    Salameh, A., Blanke, K., & Daehnert, I. (2013). Role of connexins in human congenital heart disease: the chicken and egg problem. Frontiers in Pharmacology, 4, 70. Scholar
  22. 22.
    Schulz, R., Boengler, K., Totzeck, A., Luo, Y., Garcia-Dorado, D., & Heusch, G. (2007). Connexin 43 in ischemic pre- and postconditioning. Heart Failure Reviews, 12, 261–266. Scholar
  23. 23.
    Thajudeen, A., Stecker, E. C., Shehata, M., Patel, J., Wang, X., McAnulty Jr., J. H., Kobashigawa, J., & Chugh, S. S. (2012). Arrhythmias after heart transplantation: Mechanisms and management. Journal of the American Heart Association, 1, e001461. Scholar
  24. 24.
    Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., & Wang, Z. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 13, 486–491. Scholar
  25. 25.
    Yang, Y., Del Re, D. P., Nakano, N., Sciarretta, S., Zhai, P., Park, J., Sayed, D., Shirakabe, A., Matsushima, S., Park, Y., Tian, B., Abdellatif, M., & Sadoshima, J. (2015). miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circulation Research, 117, 891–904. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yan Jin
    • 1
  • Tianyi Zhou
    • 1
  • Qiuting Feng
    • 1
  • Jun Yang
    • 1
  • Jianing Cao
    • 1
  • Xin Xu
    • 1
  • Chengjian Yang
    • 1
    Email author
  1. 1.Department of CardiologyThe Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical UniversityWuxiChina

Personalised recommendations