Advertisement

Impact of Free-Breathing Phase-Contrast MRI on Decision-Making in Fontan Surgical Planning

  • Zhenglun Alan Wei
  • Phillip M. Trusty
  • Yingnan Zhang
  • Elaine Tang
  • Kevin K. Whitehead
  • Mark A. Fogel
  • Ajit P. YoganathanEmail author
Original Article
  • 25 Downloads

Abstract

Fontan surgical planning ranks proposed surgical options according to their hemodynamics assessed by computational fluid dynamic (CFD) modeling. CFD commonly utilizes blood flow acquired under breath-holding (BH) conditions. Ignoring the free-breathing (FB) effect on blood flow waveforms may impact the ranking of surgical options. This study investigates such a potential impact by including ten Fontan patients who had blood flow acquisitions under both BH and FB conditions. A virtual surgery platform was used to generate two surgical options for each patient: (1) a traditional Fontan conduit and (2) a Y-graft. These options were ranked based on clinically relevant hemodynamic metrics: power loss (PL) and hepatic flow distribution (HFD). No difference was found in the ranking of options between using FB and BH flow acquisitions. The findings indicated that decision-making is not affected by the types of flow acquisition for Fontan surgical planning.

Keywords

Fontan surgical planning Computational fluid dynamics Phase-contrast MRI 

Abbreviations

BH

Breath-holding

CFD

Computational fluid dynamics

FB

Free-breathing

HFD

Hepatic flow distribution

IVC

Inferior vena cava

LPA

Left pulmonary artery

MR

Magnetic resonance

PAVM

Pulmonary arteriovenous malformation

PC-MRI

Phase-contrast magnetic resonance imaging

PL

Power loss

RPA

Right pulmonary artery

rtPC-MRI

Real-time phase-contrast magnetic resonance imaging

SVC

Superior vena cava

Notes

Acknowledgments

The authors acknowledge the use of ANSYS software, which was provided through an Academic Partnership between ANSYS, Inc. and the Cardiovascular Fluid Mechanics Lab at the Georgia Tech.

Funding Information

This study was supported by the National Heart, Lung, and Blood Institute Grants HL067622 and HL098252.

Compliance with Ethical Standards

Human Subjects/Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients and all study protocols complied with the Institutional Review Boards of the participating institutions: Georgia Institute of Technology and Children’s Hospital of Philadelphia (IRB Number H05236, Understanding/Improving Fontan Flow Dynamics II).

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Trusty, P. M., Wei, Z., Rychik, J., Russo, P. A., Surrey, L. F., Goldberg, D. J., et al. (2018). Impact of hemodynamics and fluid energetics on liver fibrosis after Fontan operation. The Journal of Thoracic and Cardiovascular Surgery, 156(1), 267–275.  https://doi.org/10.1016/j.jtcvs.2018.02.078.CrossRefPubMedGoogle Scholar
  2. 2.
    Trusty, P. M., Wei, Z., Rychik, J., Graham, A., Russo, P. A., Surrey, L. F., et al. (Accepted). Cardiac magnetic resonance derived metrics are predictive of liver fibrosis in fontan patients. Annals of Thoracic Surgery.Google Scholar
  3. 3.
    Rychik, J., Atz, A. M., Celermajer, D. S., Deal, B. J., Gatzoulis, M. A., Gewillig, M. H., et al. (2019). Evaluation and management of the child and adult with fontan circulation: A scientific statement From the American Heart Association. Circulation, CIR0000000000000696.  https://doi.org/10.1161/CIR.0000000000000696.
  4. 4.
    Feinstein, J. a., Benson, D. W., Dubin, A. M., Cohen, M. S., Maxey, D. M., Mahle, W. T., et al. (2012). Hypoplastic left heart syndrome: Current considerations and expectations. Journal of the American College of Cardiology, 59(1 Suppl), S1–S42.  https://doi.org/10.1016/j.jacc.2011.09.022.CrossRefGoogle Scholar
  5. 5.
    Alsaied, T., Bokma, J. P., Engel, M. E., Kuijpers, J. M., Hanke, S. P., Zuhlke, L., et al. (2017). Factors associated with long-term mortality after Fontan procedures: A systematic review. Heart, 103(2), 104–110.  https://doi.org/10.1136/heartjnl-2016-310108.CrossRefPubMedGoogle Scholar
  6. 6.
    Khiabani, R., Whitehead, K., Han, D., Restrepo, M., Tang, E., Bethel, J., et al. (2015). Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart, 101(2), 139–143.CrossRefGoogle Scholar
  7. 7.
    Tang, E., Wei, Z. A., Whitehead, K. K., Khiabani, R. H., Restrepo, M., Mirabella, L., et al. (2017). Effect of Fontan geometry on exercise haemodynamics and its potential implications. Heart, 103(22), 1806–1812.  https://doi.org/10.1136/heartjnl-2016-310855.CrossRefPubMedGoogle Scholar
  8. 8.
    Whitehead, K. K., Pekkan, K., Kitajima, H. D., Paridon, S. M., Yoganathan, A. P., & Fogel, M. A. (2007). Nonlinear power loss during exercise in single-ventricle patients after the Fontan: Insights from computational fluid dynamics. Circulation, 116(11 Suppl), I165–I171.  https://doi.org/10.1161/CIRCULATIONAHA.106.680827.CrossRefPubMedGoogle Scholar
  9. 9.
    Pike, N. A., Vricella, L. A., Feinstein, J. A., Black, M. D., & Reitz, B. A. (2004). Regression of severe pulmonary arteriovenous malformations after Fontan revision and “hepatic factor” rerouting. The Annals of Thoracic Surgery, 78(2), 697–699.  https://doi.org/10.1016/j.athoracsur.2004.02.003.CrossRefPubMedGoogle Scholar
  10. 10.
    Bernstein, H. S., Brook, M. M., Silverman, N. H., & Bristow, J. (1995). Development of pulmonary arteriovenous fistulae in children after cavopulmonary shunt. Circulation, 92(9), 309–314.  https://doi.org/10.1161/01.Cir.92.9.309.CrossRefGoogle Scholar
  11. 11.
    Nakamura, Y., Yagihara, T., Kagisaki, K., Hagino, I., & Kobayashi, J. (2009). Pulmonary arteriovenous malformations after a Fontan operation in the left isomerism and absent inferior vena cava. European Journal of Cardio-Thoracic Surgery, 36(1), 69–76; discussion 76.  https://doi.org/10.1016/j.ejcts.2009.02.046.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang, W., Vignon-Clementel, I. E., Troianowski, G., Reddy, V. M., Feinstein, J. a., & Marsden, A. L. (2012). Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: A case series computational fluid dynamics study. The Journal of Thoracic and Cardiovascular Surgery, 143(5), 1086–1097.  https://doi.org/10.1016/j.jtcvs.2011.06.042.CrossRefPubMedGoogle Scholar
  13. 13.
    Trusty, P. M., Wei, Z., Sales, M., Kanter, K. R., Fogel, M. A., Yoganathan, A. P., et al. (2019). Y-graft modification to the Fontan procedure: Increasingly balanced flow over time. The Journal of Thoracic and Cardiovascular Surgery.  https://doi.org/10.1016/j.jtcvs.2019.06.063.
  14. 14.
    Trusty, P. M., Wei, Z., Tree, M., Kanter, K. R., Fogel, M. A., Yoganathan, A. P., et al. (2017). Local hemodynamic differences between commercially available Y-grafts and traditional Fontan baffles under simulated exercise conditions: Implications for exercise tolerance. Cardiovascular Engineering and Technology, 8(3), 390–399.  https://doi.org/10.1007/s13239-017-0310-5.CrossRefPubMedGoogle Scholar
  15. 15.
    Wei, Z. A., Trusty, P. M., Tree, M., Haggerty, C. M., Tang, E., Fogel, M., et al. (2017). Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning? Journal of Biomechanics, 50, 172–179.  https://doi.org/10.1016/j.jbiomech.2016.11.025.CrossRefPubMedGoogle Scholar
  16. 16.
    Tree, M., Wei, Z. A., Trusty, P. M., Raghav, V., Fogel, M., Maher, K., et al. (2018). Using a novel in vitro Fontan model and condition-specific real-time MRI data to examine hemodynamic effects of respiration and exercise. Annals of Biomedical Engineering, 46(1), 135–147.  https://doi.org/10.1007/s10439-017-1943-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Khairy, P., & Poirier, N. (2012). Is the extracardiac conduit the preferred Fontan approach for patients with univentricular hearts? The extracardiac conduit is not the preferred Fontan approach for patients with univentricular hearts. Circulation, 126(21), 2516–2525; discussion 2525.  https://doi.org/10.1161/CIRCULATIONAHA.111.075036.CrossRefPubMedGoogle Scholar
  18. 18.
    Kogon, B. (2012). Is the extracardiac conduit the preferred Fontan approach for patients with univentricular hearts? The extracardiac conduit is the preferred Fontan approach for patients with univentricular hearts. Circulation, 126(21), 2511–2515; discussion 2515.  https://doi.org/10.1161/CIRCULATIONAHA.111.076398.CrossRefPubMedGoogle Scholar
  19. 19.
    Fogel, M. A., Khiabani, R. H., & Yoganathan, A. (2013). Imaging for preintervention planning: Pre- and post-Fontan procedures. Circulation. Cardiovascular Imaging, 6(6), 1092–1101.  https://doi.org/10.1161/CIRCIMAGING.113.000335.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baretta, A., Corsini, C., Yang, W., Vignon-Clementel, I. E., Marsden, A. L., Feinstein, J. A., et al. (2011). Virtual surgeries in patients with congenital heart disease: A multi-scale modelling test case. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 369(1954), 4316–4330.  https://doi.org/10.1098/rsta.2011.0130.CrossRefPubMedGoogle Scholar
  21. 21.
    Fogel, M. A., Weinberg, P. M., Hoydu, A., Hubbard, A., Rychik, J., Jacobs, M., et al. (1997). The nature of flow in the systemc venous pathway measured by magnetic resonance blood tagging in patients having the Fontan operation. The Journal of Thoracic and Cardiovascular Surgery, 114, 1032–1041.CrossRefGoogle Scholar
  22. 22.
    Hsia, T. Y., Khambadkone, S., Deanfield, J. E., Taylor, J. F., Migliavacca, F., & De Leval, M. R. (2001). Subdiaphragmatic venous hemodynamics in the Fontan circulation. The Journal of Thoracic and Cardiovascular Surgery, 121(3), 436–447.  https://doi.org/10.1067/mtc.2001.112527.CrossRefPubMedGoogle Scholar
  23. 23.
    Hsia, T. Y., Khambadkone, S., Redington, A. N., Migliavacca, F., Deanfield, J. E., & Leval, M. R. d (2000). Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation, 102(suppl III), 148–153.Google Scholar
  24. 24.
    Hjortdal, V. E., Emmertsen, K., Stenbog, E., Frund, T., Schmidt, M. R., Kromann, O., et al. (2003). Effects of exercise and respiration on blood flow in total cavopulmonary connection: A real-time magnetic resonance flow study. Circulation, 108(10), 1227–1231.  https://doi.org/10.1161/01.CIR.0000087406.27922.6B.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu, J., Qian, Y., Sun, Q., Liu, J., & Umezu, M. (2013). Use of computational fluid dynamics to estimate hemodynamic effects of respiration on hypoplastic left heart syndrome surgery: Total cavopulmonary connection treatments. TheScientificWorldJournal, 2013, 131597–131597.  https://doi.org/10.1155/2013/131597.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marsden, A. L., Vignon-Clementel, I. E., Chan, F. P., Feinstein, J. A., & Taylor, C. A. (2007). Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Annals of Biomedical Engineering, 35(2), 250–263.  https://doi.org/10.1007/s10439-006-9224-3.CrossRefPubMedGoogle Scholar
  27. 27.
    Lin, H. Y., Bender, J. A., Ding, Y., Chung, Y. C., Hinton, A. M., Pennell, M. L., et al. (2012). Shared velocity encoding: A method to improve the temporal resolution of phase-contrast velocity measurements. Magnetic Resonance in Medicine, 68(3), 703–710.CrossRefGoogle Scholar
  28. 28.
    Wei, Z., Whitehead, K. K., Khiabani, R. H., Tree, M., Tang, E., Paridon, S. M., et al. (2016). Respiratory effects on Fontan circulation during rest and exercise using real-time cardiac magnetic resonance imaging. The Annals of Thoracic Surgery, 101(5), 1818–1825.  https://doi.org/10.1016/j.athoracsur.2015.11.011.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of segment - freely available software for cardiovascular image analysis. BMC Medical Imaging, 10(1).Google Scholar
  30. 30.
    Trusty, P. M., Slesnick, T. C., Wei, Z. A., Rossignac, J., Kanter, K. R., Fogel, M. A., et al. (2018). Fontan surgical planning: Previous accomplishments, current challenges, and future directions. Journal of Cardiovascular Translational Research, 11(2), 133–144.  https://doi.org/10.1007/s12265-018-9786-0.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Luffel, M., Sati, M., Rossignac, J., Yoganathan, A. P., Haggerty, C. M., Restrepo, M., et al. (2016). SURGEM: A solid modeling tool for planning and optimizing pediatric heart surgeries. CAD Computer Aided Design, 70, 3–12.  https://doi.org/10.1016/j.cad.2015.06.018.CrossRefGoogle Scholar
  32. 32.
    Tang, E., Restrepo, M., Haggerty, C. M., Mirabella, L., Bethel, J., Whitehead, K. K., et al. (2014). Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC: Cardiovascular Imaging, 7(3), 215–224.  https://doi.org/10.1016/j.jcmg.2013.12.010.CrossRefPubMedGoogle Scholar
  33. 33.
    Tang, E., Wei, Z. A., Trusty, P. M., Whitehead, K. K., Mirabella, L., Veneziani, A., et al. (2019). The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning. Journal of Biomechanics, 82, 87–95.  https://doi.org/10.1016/j.jbiomech.2018.10.013.CrossRefPubMedGoogle Scholar
  34. 34.
    Wei, Z. A., Tree, M., Trusty, P. M., Wu, W., Singh-Gryzbon, S., & Yoganathan, A. (2018). The advantages of viscous dissipation rate over simplified power loss as a Fontan hemodynamic metric. Annals of Biomedical Engineering, 46(3), 404–416.  https://doi.org/10.1007/s10439-017-1950-1.CrossRefPubMedGoogle Scholar
  35. 35.
    Pedersen, E. M., Stenbøg, E. V., Fründ, T., Houlind, K., Kromann, O., Sørensen, K. E., et al. (2002). Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping. Heart, 87(6), 554–558.  https://doi.org/10.1136/heart.87.6.554.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Korperich, H., Barth, P., Gieseke, J., Muller, K., Burchert, W., Esdorn, H., et al. (2015). Impact of respiration on stroke volumes in paediatric controls and in patients after Fontan procedure assessed by MR real-time phase-velocity mapping. European Heart Journal Cardiovascular Imaging, 16(2), 198–209.  https://doi.org/10.1093/ehjci/jeu179.CrossRefPubMedGoogle Scholar
  37. 37.
    Khiabani, R. H., Restrepo, M., Tang, E., De Zélicourt, D., Sotiropoulos, F., Fogel, M., et al. (2012). Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection. Journal of Biomechanics, 45(14), 2376–2381.  https://doi.org/10.1016/j.jbiomech.2012.07.010.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dasi, L. P., Pekkan, K., Katajima, H. D., & Yoganathan, A. P. (2008). Functional analysis of Fontan energy dissipation. Journal of Biomechanics, 41(10), 2246–2252.  https://doi.org/10.1016/j.jbiomech.2008.04.011.CrossRefPubMedGoogle Scholar
  39. 39.
    Dasi, L. P., Pekkan, K., De Zelicourt, D., Sundareswaran, K. S., Krishnankutty, R., Delnido, P. J., et al. (2009). Hemodynamic energy dissipation in the cardiovascular system: Generalized theoretical analysis on disease states. Annals of Biomedical Engineering, 37(4), 661–673.  https://doi.org/10.1007/s10439-009-9650-0.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Trusty, P. M., Wei, Z. A., Slesnick, T. C., Kanter, K. R., Spray, T. L., Fogel, M. A., et al. (2019). The first cohort of prospective Fontan surgical planning patients with follow-up data: How accurate is surgical planning? The Journal of Thoracic and Cardiovascular Surgery, 157(3), 1146–1155.  https://doi.org/10.1016/j.jtcvs.2018.11.102.CrossRefPubMedGoogle Scholar
  41. 41.
    Long, C. C., Hsu, M. C., Bazilevs, Y., Feinstein, J. A., & Marsden, A. L. (2012). Fluid – Structure interaction simulations of the Fontan procedure using variable wall properties. International Journal for Numerical Methods in Biomedical Engineering, 28(January), 513–527.  https://doi.org/10.1002/cnm.CrossRefPubMedGoogle Scholar
  42. 42.
    Wei, Z. A., Huddleston, C., Trusty, P. M., Singh-Gryzbon, S., Fogel, M. A., Veneziani, A., et al. (2019). Analysis of inlet velocity profiles in numerical assessment of Fontan hemodynamics. Annals of Biomedical Engineering.  https://doi.org/10.1007/s10439-019-02307-z.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhenglun Alan Wei
    • 1
  • Phillip M. Trusty
    • 1
  • Yingnan Zhang
    • 1
  • Elaine Tang
    • 2
  • Kevin K. Whitehead
    • 3
  • Mark A. Fogel
    • 3
  • Ajit P. Yoganathan
    • 1
    Email author
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory UniversityAtlantaUSA
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Division of CardiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations