Advertisement

Journal of Cardiovascular Translational Research

, Volume 12, Issue 6, pp 560–568 | Cite as

Oxidized HDL, as a Novel Biomarker for Calcific Aortic Valve Disease, Promotes the Calcification of Aortic Valve Interstitial Cells

  • Jia Teng Sun
  • Yuan Yuan Chen
  • Jing Yan Mao
  • Yan Ping Wang
  • Ya Fen Chen
  • Xiang Hu
  • Ke YangEmail author
  • Yan LiuEmail author
Original Article

Abstract

Calcific aortic valve disease (CAVD) is characterized by progressive mineralization of the aortic valve. Lipid infiltration and oxidative stress are the driving forces for the initiation and development of this disease. However, it remains unknown whether oxidized high-density lipoprotein (ox-HDL) plays a role in the mineralization of aortic valve interstitial cells (AVICs). Serum ox-HDL levels were determined in 168 severe CAVD patients and 168 age- and gender-matched non-CAVD controls. Results showed that ox-HDL concentrations were significantly increased in CAVD compared with the control group (131.52 ± 30.96 ng/mL vs. 112.58 ± 32.20 ng/mL, P < 0.001) and were correlated with CAVD severity. Multivariable logistic regression revealed that ox-HDL levels were independently associated with CAVD after adjusting for the incidence of coronary artery disease (CAD) (odds ratio 1.019, 95% CI 1.012–1.027, P < 0.001) or atherosclerotic risk factors (odds ratio 1.027, 95% CI 1.017–1.037, P < 0.001). Chronic ox-HDL stimulation of AVICs increased alkaline phosphatase activity (ALP) and calcium deposits in AVICs in vitro. Mechanistic studies further showed that ox-HDL upregulated several osteogenic factors, including BMP-2, Runx2, and Msx2 expressions in AVICs. This is the first study to demonstrate a relationship between increased ox-HDL concentration and CAVD incidence.

Keywords

Oxidized HDL Calcific aortic valve disease Aortic valve interstitial cells Calcification 

Notes

Funding Information

This work was supported by grants from the Chinese National Nature Science Foundation (81800223, 81470547 and 81500299), Shanghai Sailing Program (18YF1413500), and Joint Funds for the Innovation of Science and Technology, Fujian Province (2017Y9007).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All study protocols were approved by the Ethical Committee of Shanghai Jiao Tong University School of Medicine. Each participant provided written informed consent before the study commenced.

Supplementary material

12265_2019_9903_MOESM1_ESM.docx (15 kb)
Supplementary Table 1 (DOCX 15 kb)
12265_2019_9903_MOESM2_ESM.docx (14 kb)
Supplementary Table 2 (DOCX 14 kb)

References

  1. 1.
    Rajamannan, N. M., Evans, F. J., Aikawa, E., Grande-Allen, K. J., Demer, L. L., Heistad, D. D., Simmons, C. A., Masters, K. S., Mathieu, P., O'Brien, K. D., Schoen, F. J., Towler, D. A., Yoganathan, A. P., & Otto, C. M. (2011). Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation, 124, 1783–1791.CrossRefGoogle Scholar
  2. 2.
    Branchetti, E., Sainger, R., Poggio, P., Grau, J. B., Patterson-Fortin, J., Bavaria, J. E., Chorny, M., Lai, E., Gorman, R. C., Levy, R. J., & Ferrari, G. (2013). Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, e66–e74.CrossRefGoogle Scholar
  3. 3.
    Osman, L., Yacoub, M. H., Latif, N., Amrani, M., & Chester, A. H. (2006). Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation, 114, I547–I552.PubMedGoogle Scholar
  4. 4.
    Mathieu, P., & Boulanger, M. C. (2014). Basic mechanisms of calcific aortic valve disease. The Canadian Journal of Cardiology, 30, 982–993.CrossRefGoogle Scholar
  5. 5.
    Bouchareb, R., Boulanger, M. C., Fournier, D., Pibarot, P., Messaddeq, Y., & Mathieu, P. (2014). Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a rhoa/rock-dependent mechanism. Journal of Molecular and Cellular Cardiology, 67, 49–59.CrossRefGoogle Scholar
  6. 6.
    Rosenson, R. S., Brewer, H. B., Jr., Ansell, B., Barter, P., Chapman, M. J., Heinecke, J. W., Kontush, A., Tall, A. R., & Webb, N. R. (2013). Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation, 128, 1256–1267.CrossRefGoogle Scholar
  7. 7.
    Barter, P. J., Nicholls, S., Rye, K. A., Anantharamaiah, G. M., Navab, M., & Fogelman, A. M. (2004). Antiinflammatory properties of hdl. Circulation Research, 95, 764–772.CrossRefGoogle Scholar
  8. 8.
    von Eckardstein, A., Nofer, J. R., & Assmann, G. (2001). High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 13–27.CrossRefGoogle Scholar
  9. 9.
    Parhami, F., Basseri, B., Hwang, J., Tintut, Y., & Demer, L. L. (2002). High-density lipoprotein regulates calcification of vascular cells. Circulation Research, 91, 570–576.CrossRefGoogle Scholar
  10. 10.
    Audet, A., Cote, N., Couture, C., Bosse, Y., Despres, J. P., Pibarot, P., & Mathieu, P. (2012). Amyloid substance within stenotic aortic valves promotes mineralization. Histopathology, 61, 610–619.CrossRefGoogle Scholar
  11. 11.
    Yao, S., Tian, H., Zhao, L., Li, J., Yang, L., Yue, F., Li, Y., Jiao, P., Yang, N., Wang, Y., Zhang, X., & Qin, S. (2017). Oxidized high density lipoprotein induces macrophage apoptosis via toll-like receptor 4-dependent chop pathway. Journal of Lipid Research, 58, 164–177.CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Ji, L., Jiang, R., Zheng, L., & Liu, D. (2014). Oxidized high-density lipoprotein induces the proliferation and migration of vascular smooth muscle cells by promoting the production of ros. Journal of Atherosclerosis and Thrombosis, 21, 204–216.CrossRefGoogle Scholar
  13. 13.
    Matsunaga, T., Hokari, S., Koyama, I., Harada, T., & Komoda, T. (2003). Nf-kappa b activation in endothelial cells treated with oxidized high-density lipoprotein. Biochemical and Biophysical Research Communications, 303, 313–319.CrossRefGoogle Scholar
  14. 14.
    Baumgartner, H., Falk, V., Bax, J. J., De Bonis, M., Hamm, C., Holm, P. J., Iung, B., Lancellotti, P., Lansac, E., Rodriguez Munoz, D., Rosenhek, R., Sjogren, J., Tornos Mas, P., Vahanian, A., Walther, T., Wendler, O., Windecker, S., Zamorano, J. L., & Group ESCSD. (2017). 2017 esc/eacts guidelines for the management of valvular heart disease. European Heart Journal, 38, 2739–2791.CrossRefGoogle Scholar
  15. 15.
    Mack, W. J., Azen, S. P., Dunn, M., & Hodis, H. N. (1997). A comparison of quantitative computerized and human panel coronary endpoint measures: implications for the design of angiographic trials. Controlled Clinical Trials, 18, 168–179.CrossRefGoogle Scholar
  16. 16.
    Sun, J. T., Yang, K., Lu, L., Zhu, Z. B., Zhu, J. Z., Ni, J. W., Han, H., Chen, N., & Zhang, R. Y. (2016). Increased carbamylation level of hdl in end-stage renal disease: carbamylated-hdl attenuated endothelial cell function. American Journal of Physiology. Renal Physiology, 310, F511–F517.CrossRefGoogle Scholar
  17. 17.
    Mohler, E. R., 3rd, Chawla, M. K., Chang, A. W., Vyavahare, N., Levy, R. J., Graham, L., & Gannon, F. H. (1999). Identification and characterization of calcifying valve cells from human and canine aortic valves. The Journal of Heart Valve Disease, 8, 254–260.PubMedGoogle Scholar
  18. 18.
    Mathieu, P., Voisine, P., Pepin, A., Shetty, R., Savard, N., & Dagenais, F. (2005). Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. The Journal of Heart Valve Disease, 14, 353–357.PubMedGoogle Scholar
  19. 19.
    Matsubara, T., Kida, K., Yamaguchi, A., Hata, K., Ichida, F., Meguro, H., Aburatani, H., Nishimura, R., & Yoneda, T. (2008). Bmp2 regulates osterix through msx2 and runx2 during osteoblast differentiation. The Journal of Biological Chemistry, 283, 29119–29125.CrossRefGoogle Scholar
  20. 20.
    Kaden, J. J., Bickelhaupt, S., Grobholz, R., Haase, K. K., Sarikoc, A., Kilic, R., Brueckmann, M., Lang, S., Zahn, I., Vahl, C., Hagl, S., Dempfle, C. E., & Borggrefe, M. (2004). Receptor activator of nuclear factor kappab ligand and osteoprotegerin regulate aortic valve calcification. Journal of Molecular and Cellular Cardiology, 36, 57–66.CrossRefGoogle Scholar
  21. 21.
    Small, A., Kiss, D., Giri, J., Anwaruddin, S., Siddiqi, H., Guerraty, M., Chirinos, J. A., Ferrari, G., & Rader, D. J. (2017). Biomarkers of calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 623–632.CrossRefGoogle Scholar
  22. 22.
    Nel, K., Nam, M. C. Y., Anstey, C., Boos, C. J., Carlton, E., Senior, R., Kaski, J. C., Khattab, A., Shamley, D., Byrne, C. D., Stanton, T., & Greaves, K. (2017). Myocardial blood flow reserve is impaired in patients with aortic valve calcification and unobstructed epicardial coronary arteries. International Journal of Cardiology, 248, 427–432.CrossRefGoogle Scholar
  23. 23.
    Mahmut, A., Boulanger, M. C., El Husseini, D., Fournier, D., Bouchareb, R., Despres, J. P., Pibarot, P., Bosse, Y., & Mathieu, P. (2014). Elevated expression of lipoprotein-associated phospholipase a2 in calcific aortic valve disease: Implications for valve mineralization. Journal of the American College of Cardiology, 63, 460–469.CrossRefGoogle Scholar
  24. 24.
    Rossebo, A. B., Pedersen, T. R., Boman, K., Brudi, P., Chambers, J. B., Egstrup, K., Gerdts, E., Gohlke-Barwolf, C., Holme, I., Kesaniemi, Y. A., Malbecq, W., Nienaber, C. A., Ray, S., Skjaerpe, T., Wachtell, K., Willenheimer, R., & Investigators, S. (2008). Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. The New England Journal of Medicine, 359, 1343–1356.CrossRefGoogle Scholar
  25. 25.
    Chan, K. L., Teo, K., Dumesnil, J. G., Ni, A., Tam, J., & Investigators, A. (2010). Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (astronomer) trial. Circulation, 121, 306–314.CrossRefGoogle Scholar
  26. 26.
    Kotani, K., Sakane, N., Ueda, M., Mashiba, S., Hayase, Y., Tsuzaki, K., Yamada, T., & Remaley, A. T. (2012). Oxidized high-density lipoprotein is associated with increased plasma glucose in non-diabetic dyslipidemic subjects. Clinica Chimica Acta, 414, 125–129.CrossRefGoogle Scholar
  27. 27.
    Mohty, D., Pibarot, P., Despres, J. P., Cote, C., Arsenault, B., Cartier, A., Cosnay, P., Couture, C., & Mathieu, P. (2008). Association between plasma ldl particle size, valvular accumulation of oxidized ldl, and inflammation in patients with aortic stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 187–193.CrossRefGoogle Scholar
  28. 28.
    Sun, J. T., Liu, Y., Lu, L., Liu, H. J., Shen, W. F., Yang, K., & Zhang, R. Y. (2016). Diabetes-invoked high-density lipoprotein and its association with coronary artery disease in patients with type 2 diabetes mellitus. The American Journal of Cardiology, 118, 1674–1679.CrossRefGoogle Scholar
  29. 29.
    Katz, R., Budoff, M. J., Takasu, J., Shavelle, D. M., Bertoni, A., Blumenthal, R. S., Ouyang, P., Wong, N. D., & O'Brien, K. D. (2009). Relationship of metabolic syndrome with incident aortic valve calcium and aortic valve calcium progression: the multi-ethnic study of atherosclerosis (mesa). Diabetes, 58, 813–819.CrossRefGoogle Scholar
  30. 30.
    Arsenault, B. J., Dube, M. P., Brodeur, M. R., de Oliveira Moraes, A. B., Lavoie, V., Kernaleguen, A. E., Guauque-Olarte, S., Mathieu, P., Pibarot, P., Messika-Zeitoun, D., Bosse, Y., Rhainds, D., Rheaume, E., & Tardif, J. C. (2014). Evaluation of links between high-density lipoprotein genetics, functionality, and aortic valve stenosis risk in humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 457–462.CrossRefGoogle Scholar
  31. 31.
    Yang, X., Fullerton, D. A., Su, X., Ao, L., Cleveland, J. C., Jr., & Meng, X. (2009). Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. Journal of the American College of Cardiology, 53, 491–500.CrossRefGoogle Scholar
  32. 32.
    Masjedi, S., Amarnath, A., Baily, K. M., & Ferdous, Z. (2016). Comparison of calcification potential of valvular interstitial cells isolated from individual aortic valve cusps. Cardiovascular Pathology, 25, 185–194.CrossRefGoogle Scholar
  33. 33.
    Jang, W. G., Kim, E. J., Kim, D. K., Ryoo, H. M., Lee, K. B., Kim, S. H., Choi, H. S., & Koh, J. T. (2012). Bmp2 protein regulates osteocalcin expression via runx2-mediated atf6 gene transcription. The Journal of Biological Chemistry, 287, 905–915.CrossRefGoogle Scholar
  34. 34.
    Tyson, K. L., Reynolds, J. L., McNair, R., Zhang, Q., Weissberg, P. L., & Shanahan, C. M. (2003). Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 489–494.CrossRefGoogle Scholar
  35. 35.
    Yung, L. M., Sanchez-Duffhues, G., Ten Dijke, P., & Yu, P. B. (2015). Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovascular Research, 108, 278–287.CrossRefGoogle Scholar
  36. 36.
    Byon, C. H., Javed, A., Dai, Q., Kappes, J. C., Clemens, T. L., Darley-Usmar, V. M., McDonald, J. M., & Chen, Y. (2008). Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor runx2 by akt signaling. The Journal of Biological Chemistry, 283, 15319–15327.CrossRefGoogle Scholar
  37. 37.
    Miki, T., Miyoshi, T., Kotani, K., Kohno, K., Asonuma, H., Sakuragi, S., Koyama, Y., Nakamura, K., & Ito, H. (2019). Decrease in oxidized high-density lipoprotein is associated with slowed progression of coronary artery calcification: subanalysis of a prospective multicenter study. Atherosclerosis, 283, 1–6.CrossRefGoogle Scholar
  38. 38.
    Rosenson, R. S., Brewer, H. B., Jr., Ansell, B. J., Barter, P., Chapman, M. J., Heinecke, J. W., Kontush, A., Tall, A. R., & Webb, N. R. (2016). Dysfunctional hdl and atherosclerotic cardiovascular disease. Nature Reviews. Cardiology, 13, 48–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jia Teng Sun
    • 1
  • Yuan Yuan Chen
    • 2
    • 3
  • Jing Yan Mao
    • 3
  • Yan Ping Wang
    • 3
  • Ya Fen Chen
    • 3
  • Xiang Hu
    • 4
  • Ke Yang
    • 3
    Email author
  • Yan Liu
    • 2
    Email author
  1. 1.Department of Cardiology, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Department of Cardiology, Shanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
  3. 3.Institute of Cardiovascular DiseaseShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
  4. 4.Department of Cardiac SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina

Personalised recommendations