MicroRNA-29b-3p Targets SPARC Gene to Protect Cardiocytes against Autophagy and Apoptosis in Hypoxic-Induced H9c2 Cells

  • Shu Zhou
  • Dazhou Lei
  • Faqin Bu
  • Hongqiang Han
  • Shucai Zhao
  • Yan Wang
Original Article


MicroRNAs participate in the regulation of abnormal cardiomyocyte apoptosis and autophagy, which leads to heart failure (HF). Lower miR-29b-3p levels were found in HF patients in this study. However, the role of miR-29b-3p in the molecular pathogenesis of HF remains unclear. Hypoxia-stimulated H9c2 cells were used an in vitro model of HF. It was found that hypoxia stimulation decreased the miR-29b-3p expression and enhanced cell apoptosis and autophagy response in H9c2 cells. While the effects of hypoxia on cell apoptosis and autophagy were reversed by miR-29b-3p transfection, especially 100 nM. The secreted protein acidic and rich in cysteine (SPARC), predicted as a direct target of miR-29b-3p, aggravated the hypoxia-induced cells apoptosis, autophagy, and TGFβ1/Smad3 activation. While the changes were dramatically reversed by miR-29b-3p. Taken together, our data suggest that miR-29b-3p plays an important role in the progression of HF through targeting SPARC and regulating TGFβ1/Smad3 pathway.


MicroRNA-29b-3p Heart failure Secreted protein acidic and rich in cysteine Apoptosis Autophagy 



The authors would like to thank the members of the Second Department of Cardiology, Xinxiang Central Hospital for participating and providing blood samples in this study.

Compliance with Ethical Standards

Conflict of Interest

The author declares that they have no conflicts of interest.

Human Subjects/Informed Consent Statement

The present study was approved by the Ethics Committee of Xinxiang Central Hospital, and written informed consent was obtained from the patients and healthy donors.

Animal Studies

No animal studies were carried out by the authors for this article.


  1. 1.
    Brito D., Cepeda B. (2017) Heart failure, congestive (CHF).Google Scholar
  2. 2.
    Jose Corbalan, J., Vatner, D. E., & Vatner, S. F. (2016). Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Research in Cardiology, 111(3), 31.CrossRefGoogle Scholar
  3. 3.
    Xia, P., Liu, Y., & Cheng, Z. (2016). Signaling pathways in cardiac myocyte apoptosis. BioMed Research International, 2016, 9583268.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gustafsson, A. B., & Gottlieb, R. A. (2009). Autophagy in ischemic heart disease. Circulation Research, 104(2), 150–158.CrossRefGoogle Scholar
  5. 5.
    Mialet-Perez, J., & Vindis, C. (2017). Autophagy in health and disease: focus on the cardiovascular system. Essays in Biochemistry, 61(6), 721–732.CrossRefGoogle Scholar
  6. 6.
    Wong, L. L., Rademaker, M. T., Saw, E. L., Lew, K. S., Ellmers, L. J., Charles, C. J., Richards, A. M., & Wang, P. (2017). Identification of novel microRNAs in the sheep heart and their regulation in heart failure. Scientific Reports, 7(1), 8250.CrossRefGoogle Scholar
  7. 7.
    Tijsen, A. J., Pinto, Y. M., & Creemers, E. E. (2012). Non-cardiomyocyte microRNAs in heart failure. Cardiovascular Research, 93(4), 573–582.CrossRefGoogle Scholar
  8. 8.
    Mendell, J. T., & Olson, E. N. (2012). MicroRNAs in stress signaling and human disease. Cell, 148(6), 1172–1187.CrossRefGoogle Scholar
  9. 9.
    Zhu, M. L., Yin, Y. L., Ping, S., Yu, H. Y., Wan, G. R., Jian, X., & Li, P. (2017). Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clinical and Experimental Hypertension, 39(7), 672–679.CrossRefGoogle Scholar
  10. 10.
    Yang, F., Li, P., Li, H., Shi, Q., Li, S., & Zhao, L. (2015). microRNA-29b mediates the antifibrotic effect of Tanshinone IIA in postinfarct cardiac remodeling. Journal of Cardiovascular Pharmacology, 65(5), 456–464.CrossRefGoogle Scholar
  11. 11.
    Abonnenc, M., Nabeebaccus, A. A., Mayr, U., Barallobre-Barreiro, J., Dong, X., Cuello, F., Sur, S., Drozdov, I., Langley, S. R., Lu, R., et al. (2013). Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circulation Research, 113(10), 1138–1147.CrossRefGoogle Scholar
  12. 12.
    Marques, F. Z., Vizi, D., Khammy, O., Mariani, J. A., & Kaye, D. M. (2016). The transcardiac gradient of cardio-microRNAs in the failing heart. European Journal of Heart Failure, 18(8), 1000–1008.CrossRefGoogle Scholar
  13. 13.
    Yang, Y. F., Wu, C. C., Chen, W. P., & Su, M. J. (2009). Transforming growth factor-beta type I receptor/ALK5 contributes to doxazosin-induced apoptosis in H9C2 cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 380(6), 561–567.CrossRefGoogle Scholar
  14. 14.
    Ghavami, S., Cunnington, R. H., Gupta, S., Yeganeh, B., Filomeno, K. L., Freed, D. H., Chen, S., Klonisch, T., Halayko, A. J., Ambrose, E., et al. (2015). Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death & Disease, 6, e1696.CrossRefGoogle Scholar
  15. 15.
    Chen, K., Chen, W., Liu, S. L., Wu, T. S., Yu, K. F., Qi, J., Wang, Y., Yao, H., Huang, X. Y., Han, Y., et al. (2018). Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGFbeta1/Smad3 signaling pathway. Molecular Medicine Reports, 17(6), 7652–7660.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Pandey, A. C., Lancaster, J. J., Harris, D. T., Goldman, S., & Juneman, E. (2017). Cellular therapeutics for heart failure: focus on mesenchymal stem cells. Stem Cells International, 2017, 9640108.CrossRefGoogle Scholar
  17. 17.
    Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews. Cardiology.Google Scholar
  18. 18.
    Zhang, J., Liu, D., Zhang, M., & Zhang, Y. (2018). Cardiomyocyte programmed necrosis: mitochondria, death receptor and beyond. Br J Pharmacol.Google Scholar
  19. 19.
    Moon, S. H., Bae, D., Jung, T. H., Chung, E. B., Jeong, Y. H., Park, S. J., & Chung, H. M. (2017). From bench to market: preparing human pluripotent stem cells derived cardiomyocytes for various applications. Int J Stem Cells, 10(1), 1–11.CrossRefGoogle Scholar
  20. 20.
    Huang, Z., Ye, B., Dai, Z., Wu, X., Lu, Z., Shan, P., & Huang, W. (2015). Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes. Molecular Medicine Reports, 11(6), 4678–4684.CrossRefGoogle Scholar
  21. 21.
    Qin, L., Fan, S., Jia, R., & Liu, Y. (2018). Ginsenoside Rg1 protects cardiomyocytes from hypoxia-induced injury through the PI3K/AKT/mTOR pathway. Pharmazie, 73(6), 349–355.PubMedGoogle Scholar
  22. 22.
    Roohbakhsh, A., Shamsizadeh, A., Hayes, A. W., Reiter, R. J., & Karimi, G. (2018). Melatonin as an endogenous regulator of diseases: the role of autophagy. Pharmacological Research.Google Scholar
  23. 23.
    Kriegel, A. J., Liu, Y., Fang, Y., Ding, X., & Liang, M. (2012). The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiological Genomics, 44(4), 237–244.CrossRefGoogle Scholar
  24. 24.
    Ye, Y., Hu, Z., Lin, Y., Zhang, C., & Perez-Polo, J. R. (2010). Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovascular Research, 87(3), 535–544.CrossRefGoogle Scholar
  25. 25.
    Zhang, J., He, Z., Xiao, W., Na, Q., Wu, T., Su, K., & Cui, X. (2016). Overexpression of BAG3 attenuates hypoxia-induced cardiomyocyte apoptosis by inducing autophagy. Cellular Physiology and Biochemistry, 39(2), 491–500.CrossRefGoogle Scholar
  26. 26.
    Mehrhof, F. B., Muller, F. U., Bergmann, M. W., Li, P., Wang, Y., Schmitz, W., Dietz, R., & von Harsdorf, R. (2001). In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation, 104(17), 2088–2094.CrossRefGoogle Scholar
  27. 27.
    Hu, Z., Cai, H. Y., Luo, Y. Y., Xiao, J. M., Li, L., & Guo, T. (2018). Effect of varying hypoxia reoxygenation times on autophagy of cardiomyocytes. Acta Cirúrgica Brasileira, 33(3), 223–230.CrossRefGoogle Scholar
  28. 28.
    Harris, B. S., Zhang, Y., Card, L., Rivera, L. B., Brekken, R. A., & Bradshaw, A. D. (2011). SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. American Journal of Physiology. Heart and Circulatory Physiology, 301(3), H841–H847.CrossRefGoogle Scholar
  29. 29.
    Hartley, P. S., Motamedchaboki, K., Bodmer, R., & Ocorr, K. (2016). SPARC-dependent cardiomyopathy in drosophila. Circulation. Cardiovascular Genetics, 9(2), 119–129.CrossRefGoogle Scholar
  30. 30.
    Lindsey, M. L., Mann, D. L., Entman, M. L., & Spinale, F. G. (2003). Extracellular matrix remodeling following myocardial injury. Annals of Medicine, 35(5), 316–326.CrossRefGoogle Scholar
  31. 31.
    Wang, Y., Wang, Q., Zhang, L., Ke, Z., Zhao, Y., Wang, D., Chen, H., Jiang, X., Gu, M., Fan, S., et al. (2017). Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochemical and Biophysical Research Communications, 490(2), 231–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shu Zhou
    • 1
  • Dazhou Lei
    • 1
  • Faqin Bu
    • 1
  • Hongqiang Han
    • 1
  • Shucai Zhao
    • 1
  • Yan Wang
    • 1
  1. 1.Second Department of CardiologyXinxiang Central HospitalXinxiangChina

Personalised recommendations