Advertisement

A Novel Wireless Left Atrial Pressure Monitoring System for Patients with Heart Failure, First Ex-Vivo and Animal Experience

  • Leor PerlEmail author
  • Elina Soifer
  • Jozef Bartunek
  • Dedi Erdheim
  • Friedrich Köhler
  • William T. Abraham
  • David Meerkin
Original Article
  • 28 Downloads

Abstract

The V-LAP™ measures left atrial pressure (LAP) and enables bi-directional communications with an external unit, designed to monitor heart failure patients. We hereby describe the pre-clinical experience. Following an ex vivo phase, the system was implanted at the interatrial septum of 10 ovine subjects. LAP readouts were compared with pulmonary capillary wedge pressure (PCWP) at index procedure and 1, 2 and 3–6 months after the implantation, at rest and after volume loading. Histopathology assessment (n = 8) was performed up to 50 weeks post procedure. Procedural success was 100%. Measurements showed a mean difference of 0.19 ± 2.51 mmHg. During this period, correlation of V-LAP™ with PCWP was excellent (R2 = 0.95, for 119 total measurements). There were no major adverse events related to the V-LAP™ system. In an animal model, the implantation of the novel wireless left atrial pressure sensor V-LAP™ was feasible, safe, and showed good accuracy and precision.

Keywords

Heart failure exacerbation Hemodynamics Left atrial pressure Telemonitoring 

Abbreviations

HF

Heart failure

LAP

Left atrial pressure

PCWP

Pulmonary capillary wedge pressure

MEMS

Microelectromechanical systems

ICE

Intra-cardiac echocardiography

TTE

Transthoracic echocardiography

Notes

Funding

This study was funded by Vectorious Medical Technologies.

Compliance with Ethical Standards

All animal procedures were performed in strict compliance with the Israeli National Council for Animal Experimentation and were approved by the national ethical committee (permit number IL-17-8-298).

Conflict of Interest

Author Perl owns stock options in Vectorious Medical Technologies. Author Soifer is an employee of Vectorious Medical Technologies. Author Batrunek has nothing to disclose. Author Erdheim is an employee of Vectorious Medical Technologies and owns stock options in the company. Author Köhler has received a speaker honorarium from Medtronic International and payment for lectures from Novartis. Author Abraham has received consulting fees from Vectorious Medical Technologies and consulting fees from Abbot. Author Meerkin has received consulting fee from Vectorious Medical Technologies and owns stock options in the company.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Jencks, S. F., Williams, M. V., & Coleman, E. A. (2009). Rehospitalizations among patients in the Medicare fee-for-service program. New England Journal of Medicine, 360(14), 1418–1428.  https://doi.org/10.1056/NEJMsa0803563.CrossRefPubMedGoogle Scholar
  2. 2.
    Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., …, & American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2014). Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation, 129(3), e28–e292.  https://doi.org/10.1161/01.cir.0000441139.02102.80.
  3. 3.
    Kociol, R. D., Hammill, B. G., Fonarow, G. C., Klaskala, W., Mills, R. M., Hernandez, A. F., & Curtis, L. H. (2010). Generalizability and longitudinal outcomes of a national heart failure clinical registry: Comparison of Acute Decompensated Heart Failure National Registry (ADHERE) and non-ADHERE Medicare beneficiaries. American Heart Journal, 160(5), 885–892.  https://doi.org/10.1016/j.ahj.2010.07.020.CrossRefPubMedGoogle Scholar
  4. 4.
    Chun, S., Tu, J. V., Wijeysundera, H. C., Austin, P. C., Wang, X., Levy, D., & Lee, D. S. (2012). Lifetime analysis of hospitalizations and survival of patients newly admitted with heart failure. Circulation: Heart Failure, 5(4), 414–421.  https://doi.org/10.1161/CIRCHEARTFAILURE.111.964791.CrossRefGoogle Scholar
  5. 5.
    Lee, D. S., Austin, P. C., Stukel, T. A., Alter, D. A., Chong, A., Parker, J. D., & Tu, J. V. (2009). “Dose-dependent” impact of recurrent cardiac events on mortality in patients with heart failure. The American Journal of Medicine, 122(2), 162–169.e1.  https://doi.org/10.1016/j.amjmed.2008.08.026.CrossRefPubMedGoogle Scholar
  6. 6.
    Setoguchi, S., Stevenson, L. W., & Schneeweiss, S. (2007). Repeated hospitalizations predict mortality in the community population with heart failure. American Heart Journal, 154(2), 260–266.  https://doi.org/10.1016/j.ahj.2007.01.041.CrossRefPubMedGoogle Scholar
  7. 7.
    Heidenreich, P. A., Albert, N. M., Allen, L. A., Bluemke, D. A., Butler, J., Fonarow, G. C., et al. (2013). Forecasting the impact of heart failure in the United States. Circulation: Heart Failure, 6(3), 606–619.  https://doi.org/10.1161/HHF.0b013e318291329a.CrossRefGoogle Scholar
  8. 8.
    Ross, J. S., Chen, J., Lin, Z., Bueno, H., Curtis, J. P., Keenan, P. S., …, & Krumholz, H. M. (2010). Recent national trends in readmission rates after heart failure hospitalization. Circulation: Heart Failure, 3(1), 97–103.  https://doi.org/10.1161/CIRCHEARTFAILURE.109.885210.
  9. 9.
    Lewin, J., Ledwidge, M., O’Loughlin, C., McNally, C., & McDonald, K. (2005). Clinical deterioration in established heart failure: what is the value of BNP and weight gain in aiding diagnosis? European Journal of Heart Failure, 7(6), 953–957.  https://doi.org/10.1016/j.ejheart.2005.06.003.CrossRefPubMedGoogle Scholar
  10. 10.
    Adamson, P. B. (2009). Pathophysiology of the transition from chronic compensated and acute decompensated heart failure: new insights from continuous monitoring devices. Current Heart Failure Reports, 6(4), 287–292.CrossRefGoogle Scholar
  11. 11.
    Roberts, E., Ludman, A. J., Dworzynski, K., Al-Mohammad, A., Cowie, M. R., McMurray, J. J. V., & Mant, J. (2015). The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ, 350, h910.  https://doi.org/10.1136/bmj.h910.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Davenport, C., Cheng, E. Y. L., Kwok, Y. T. T., Lai, A. H. O., Wakabayashi, T., Hyde, C., & Connock, M. (2006). Assessing the diagnostic test accuracy of natriuretic peptides and ECG in the diagnosis of left ventricular systolic dysfunction: a systematic review and meta-analysis. The British Journal of General Practice, 56(522), 48–56.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Chaudhry, S. I., Mattera, J. A., Curtis, J. P., Spertus, J. A., Herrin, J., Lin, Z., …, & Krumholz, H. M. (2010). Telemonitoring in patients with heart failure. New England Journal of Medicine, 363(24), 2301–2309.  https://doi.org/10.1056/NEJMoa1010029.
  14. 14.
    Koehler, F., Winkler, S., Schieber, M., Sechtem, U., Stangl, K., Bohm, M., …, & on behalf of the Telemedical Interventional Monitoring in Heart Failure Investigators. (2011). Impact of remote telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart failure: the telemedical interventional monitoring in heart failure study. Circulation, 123(17), 1873–1880.  https://doi.org/10.1161/CIRCULATIONAHA.111.018473.
  15. 15.
    Abraham, W. T., Adamson, P. B., Bourge, R. C., Aaron, M. F., Costanzo, M. R., Stevenson, L. W., et al. (2011). Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. The Lancet, 377(9766), 658–666.  https://doi.org/10.1016/S0140-6736(11)60101-3.CrossRefGoogle Scholar
  16. 16.
    Abraham, W. T., & Perl, L. (2017). Implantable hemodynamic monitoring for heart failure patients. Journal of the American College of Cardiology, 70(3), 389–398.  https://doi.org/10.1016/j.jacc.2017.05.052.CrossRefPubMedGoogle Scholar
  17. 17.
    Yu, C.-M., Wang, L., Chau, E., Chan, R. H.-W., Kong, S.-L., Tang, M.-O., …, & Lau, C.-P. (2005). Intrathoracic impedance monitoring in patients with heart failure. Circulation, 112(6), 841–848.  https://doi.org/10.1161/CIRCULATIONAHA.104.492207.
  18. 18.
    Abraham, W. T., Stevenson, L. W., Bourge, R. C., Lindenfeld, J. A., Bauman, J. G., & Adamson, P. B. (2016). Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. The Lancet, 387(10017), 453–461.  https://doi.org/10.1016/S0140-6736(15)00723-0.CrossRefGoogle Scholar
  19. 19.
    Desai, A. S., Bhimaraj, A., Bharmi, R., Jermyn, R., Bhatt, K., Shavelle, D., …, & Heywood, J. T. (2017). Ambulatory hemodynamic monitoring reduces heart failure hospitalizations in “real-world” clinical practice. Journal of the American College of Cardiology, 69(19), 2357–2365.  https://doi.org/10.1016/j.jacc.2017.03.009.
  20. 20.
    Sandhu, A. T., Goldhaber-Fiebert, J. D., Owens, D. K., Turakhia, M. P., Kaiser, D. W., & Heidenreich, P. A. (2016). Cost-effectiveness of implantable pulmonary artery pressure monitoring in? Chronic heart failure. JACC: Heart Failure, 4(5), 368–375.  https://doi.org/10.1016/j.jchf.2015.12.015.CrossRefPubMedGoogle Scholar
  21. 21.
    Ahn, H. C., Delshad, B., & Baranowski, J. (2016). An implantable pressure sensor for long-term wireless monitoring of cardiac function—first study in man. Journal of Cardiovascular Diseases & Diagnosis.  https://doi.org/10.4172/2329-9517.1000252.
  22. 22.
    Troughton, R. W., Ritzema, J., Eigler, N. L., Melton, I. C., Krum, H., Adamson, P. B., …, & Abraham, W. T. (2011). Direct left atrial pressure monitoring in severe heart failure: long-term sensor performance. Journal of Cardiovascular Translational Research, 4(1), 3–13.  https://doi.org/10.1007/s12265-010-9229-z.
  23. 23.
    Regan, H. K., Lynch, J. J., & Regan, C. P. (2009). Long term assessment of blood pressure transducer drift in rhesus monkeys chronically instrumented with telemetry implants. Journal of Pharmacological and Toxicological Methods, 59(1), 35–38.  https://doi.org/10.1016/j.vascn.2008.10.002.CrossRefPubMedGoogle Scholar
  24. 24.
    Adamson, P. B., Magalski, A., Braunschweig, F., Böhm, M., Reynolds, D., Steinhaus, D., …, & Bennett, T. (2003). Ongoing right ventricular hemodynamics in heart failure. Journal of the American College of Cardiology, 41(4), 565–571.  https://doi.org/10.1016/S0735-1097(02)02896-6.
  25. 25.
    Guazzi, M., & Borlaug, B. A. (2012). Pulmonary hypertension due to left heart disease. Circulation, 126(8), 975–990.  https://doi.org/10.1161/CIRCULATIONAHA.111.085761.CrossRefPubMedGoogle Scholar
  26. 26.
    Klein, A. L., Stewart, W. J., Bartlett, J., Cohen, G. I., Kahan, F., Pearce, G., …, & Cosgrove, D. M. (1992). Effects of mitral regurgitation on pulmonary venous flow and left atrial pressure: an intraoperative transesophageal echocardiographic study. Journal of the American College of Cardiology, 20(6), 1345–1352.  https://doi.org/10.1016/0735-1097(92)90247-K.
  27. 27.
    Ritzema-Carter, J. L. T., Smyth, D., Troughton, R. W., Crozier, I. G., Melton, I. C., Richards, A. M., …, & Abraham, W. T. (2006). Dynamic myocardial ischemia caused by circumflex artery stenosis detected by a new implantable left atrial pressure monitoring device. Circulation, 113(15), e705–e706.  https://doi.org/10.1161/CIRCULATIONAHA.105.572040.
  28. 28.
    Ritzema, J., Troughton, R., Melton, I., Crozier, I., Doughty, R., Krum, H., …, & Abraham, W. T. (2010). Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation, 121(9), 1086–1095.  https://doi.org/10.1161/CIRCULATIONAHA.108.800490.
  29. 29.
    Maurer, M. S., Adamson, P. B., Costanzo, M. R., Eigler, N., Gilbert, J., Gold, M. R., …, & Abraham, W. T. (2015). Rationale and design of the Left Atrial Pressure Monitoring to Optimize Heart Failure Therapy Study (LAPTOP-HF). Journal of Cardiac Failure, 21(6), 479–488.  https://doi.org/10.1016/j.cardfail.2015.04.012.
  30. 30.
    Abraham, W. T., Adamson, P. B., Costanzo, M. R., Eigler, N., Gold, M., Klapholz, M., …, & Troughton, R. (2016). Hemodynamic monitoring in advanced heart failure: results from the LAPTOP-HF trial. Journal of Cardiac Failure, 22(11), 940.  https://doi.org/10.1016/j.cardfail.2016.09.012.
  31. 31.
    Vinayakumar, D., Bijilesh, U., Sajeev, C. G., Rajesh, G. N., Bastion, C., Kadermuneer, P., …, & Krishnan, M. N. (2016). Correlation of pulmonary capillary wedge pressure with left atrial pressure in patients with mitral stenosis undergoing balloon valvotomy. Indian Heart Journal, 68(2), 143–146.  https://doi.org/10.1016/j.ihj.2015.07.050.
  32. 32.
    Nagy, A. I., Venkateshvaran, A., Dash, P. K., Barooah, B., Merkely, B., Winter, R., & Manouras, A. (2014). The pulmonary capillary wedge pressure accurately reflects both normal and elevated left atrial pressure. American Heart Journal, 167(6), 876–883.  https://doi.org/10.1016/j.ahj.2014.01.012.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Division of CardiologyRabin Medical CenterPetach-TikvaIsrael
  2. 2.The Sackler Faculty of MedicineTel Aviv UniversityTel-AvivIsrael
  3. 3.Vectorious Medical TechnologiesTel-AvivIsrael
  4. 4.Cardiovascular CenterOnze-Lieve-Vrouwziekenhuis OLV HospitalAalstBelgium
  5. 5.Department of Cardiology and Angiology at Campus MitteCharité - Universitätsmedizin Berlin, Centre for Cardiovascular TelemedicineBerlinGermany
  6. 6.Division of Cardiovascular MedicineThe Ohio State UniversityColumbusUSA
  7. 7.Department of CardiologyShaare Zedek Medical CenterJerusalemIsrael
  8. 8.Department of CardiologyPadeh-Poriya Medical CenterTiberiusIsrael

Personalised recommendations