Advertisement

Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression

  • Yang Liu
  • Zhuyuan Liu
  • Yuan Xie
  • Cuimei Zhao
  • Jiahong Xu
Original Article
  • 39 Downloads

Abstract

Extracellular vesicles (EVs) are small-sized membrane-surrounded structures released from cells into the blood, which play important roles in regulating various biological processes. However, the role of EVs in Doxorubicin (DOX)-induced cardiomyocytes senescence remains elusive. In this study, we found that human serum EVs inhibited DOX-induced senescence in H9C2 cells, which was abolished by miR-34a mimic. Our study also proved that miR-34a mediated DOX-induced H9C2 cell senescence by targeting phosphatase 1 nuclear targeting subunit (PNUTS). In addition to the downregulation of miR-34a, EVs could upregulate the expression of PNUTS. Moreover, the inhibitory effect of serum EVs on DOX-induced H9C2 cell senescence was also impeded by PNUTS siRNA. In conclusion, our study suggests that serum EVs retard H9C2 cell senescence through the miR-34a/PNUTS pathway, providing a potential therapy for cardiac aging.

Keywords

Serum extracellular vesicles Cell senescence miR-34a Phosphatase 1 nuclear targeting subunit 

Notes

Funding

This work was supported by the grants from National Natural Science Foundation of China (81470515, 81670362, and 81600228) and Shanghai Medical Guide Project from Shanghai Science and Technology Committee (134119a3000).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All human investigations conformed to the principles outlined in the Declaration of Helsinki and were approved by the institutional review committees of Shanghai Tongji Hospital.

References

  1. 1.
    Agarwal, U., George, A., Bhutani, S., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., et al. (2017). Experimental, systems, and computational approaches to understanding the MicroRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circulation Research, 120(4), 701–712.CrossRefGoogle Scholar
  2. 2.
    Angelini, F., Ionta, V., Rossi, F., Pagano, F., Chimenti, I., Messina, E., et al. (2016). Exosomes isolation protocols: facts and artifacts for cardiac regeneration. Frontiers in Bioscience (Scholar Edition), 8, 303–311.CrossRefGoogle Scholar
  3. 3.
    Schageman, J., Zeringer, E., Li, M., Barta, T., Lea, K., Gu, J., et al. (2013). The complete exosome workflow solution: from isolation to characterization of RNA cargo. BioMed Research International, 2013, 253957.CrossRefGoogle Scholar
  4. 4.
    Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38(3), 212–215.PubMedGoogle Scholar
  5. 5.
    Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.CrossRefGoogle Scholar
  6. 6.
    Song, J., Chen, X., Wang, M., Xing, Y., Zheng, Z., & Hu, S. (2014). Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Scientific Reports, 4, 7583.CrossRefGoogle Scholar
  7. 7.
    Wang, C., Zhang, C., Liu, L., A, X., Chen, B., Li, Y., et al. (2017). Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy, 25(1), 192–204.CrossRefGoogle Scholar
  8. 8.
    Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5(1).  https://doi.org/10.1161/JAHA.115.002856.
  9. 9.
    Zhang, Y., Kim, M. S., Jia, B., Yan, J., Zuniga-Hertz, J. P., Han, C., et al. (2017). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548(7665), 52–57.CrossRefGoogle Scholar
  10. 10.
    Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., et al. (2013). Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature, 497(7448), 211–216.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., & Kalderon, D. (2001). Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature, 410(6828), 599–604.CrossRefGoogle Scholar
  12. 12.
    Politano, G., Logrand, F., Brancaccio, M., & Di Carlo, S. (2017). In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. Methods, 124, 57–68.CrossRefGoogle Scholar
  13. 13.
    Dimitrakopoulos, G. N., Dimitrakopoulou, K., Maraziotis, I. A., Sgarbas, K., & Bezerianos, A. (2014). Supervised method for construction of microRNA-mRNA networks: application in cardiac tissue aging dataset. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, 318–321.Google Scholar
  14. 14.
    Chiao, Y. A. (2013). MicroRNA-34a: a new piece in the cardiac aging puzzle. Circulation. Cardiovascular Genetics, 6(4), 437–438.CrossRefGoogle Scholar
  15. 15.
    Jazbutyte, V., Fiedler, J., Kneitz, S., Galuppo, P., Just, A., Holzmann, A., et al. (2013). MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordrecht, Netherlands), 35(3), 747–762.CrossRefGoogle Scholar
  16. 16.
    Christoffersen, N. R., Shalgi, R., Frankel, L. B., Leucci, E., Lees, M., Klausen, M., et al. (2010). p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation, 17(2), 236–245.CrossRefGoogle Scholar
  17. 17.
    Boon, R. A., Seeger, T., Heydt, S., Fischer, A., Hergenreider, E., Horrevoets, A. J., et al. (2011). MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circulation Research, 109(10), 1115–1119.CrossRefGoogle Scholar
  18. 18.
    Boon, R. A., Iekushi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature, 495(7439), 107–110.CrossRefGoogle Scholar
  19. 19.
    Bei, Y., Wu, X., Cretoiu, D., Shi, J., Zhou, Q., Lin, S., et al. (2018). miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. Journal of Molecular and Cellular Cardiology, 115, 130–141.CrossRefGoogle Scholar
  20. 20.
    Maejima, Y., Adachi, S., Ito, H., Hirao, K., & Isobe, M. (2008). Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell, 7(2), 125–136.CrossRefGoogle Scholar
  21. 21.
    Liu, Z., Zhang, Z., Yao, J., Xie, Y., Dai, Q., Zhang, Y., et al. (2018). Serum extracellular vesicles promote proliferation of H9C2 cardiomyocytes by increasing miR-17-3p. Biochemical and Biophysical Research Communications, 499(3), 441–446.CrossRefGoogle Scholar
  22. 22.
    Guo, Y., Li, P., Gao, L., Zhang, J., Yang, Z., Bledsoe, G., et al. (2017). Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell, 16(4), 837–846.CrossRefGoogle Scholar
  23. 23.
    Liang, Y., & Sahoo, S. (2015). Exosomes explosion for cardiac resuscitation. Journal of the American College of Cardiology, 66(6), 612–615.CrossRefGoogle Scholar
  24. 24.
    Ong, S. G., & Wu, J. C. (2015). Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circulation Research, 117(1), 7–9.CrossRefGoogle Scholar
  25. 25.
    Peche, H., Renaudin, K., Beriou, G., Merieau, E., Amigorena, S., & Cuturi, M. C. (2006). Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. American Journal of Transplantation, 6(7), 1541–1550.CrossRefGoogle Scholar
  26. 26.
    Pironti, G., Strachan, R. T., Abraham, D., Mon-Wei Yu, S., Chen, M., Chen, W., et al. (2015). Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation, 131(24), 2120–2130.CrossRefGoogle Scholar
  27. 27.
    Prathipati, P., Nandi, S. S., & Mishra, P. K. (2017). Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Reviews, 13(1), 79–91.CrossRefGoogle Scholar
  28. 28.
    Emanueli, C., Shearn, A. I., Laftah, A., Fiorentino, F., Reeves, B. C., Beltrami, C., et al. (2016). Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One, 11(4), e0154274.CrossRefGoogle Scholar
  29. 29.
    Looze, C., Yui, D., Leung, L., Ingham, M., Kaler, M., Yao, X., et al. (2009). Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochemical and Biophysical Research Communications, 378(3), 433–438.CrossRefGoogle Scholar
  30. 30.
    Moldovan, L., Batte, K., Wang, Y., Wisler, J., & Piper, M. (2013). Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods in Molecular Biology, 1024, 129–145.CrossRefGoogle Scholar
  31. 31.
    Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.CrossRefGoogle Scholar
  32. 32.
    Ye, W., Tang, X., Yang, Z., Liu, C., Zhang, X., Jin, J., et al. (2017). Plasma-derived exosomes contribute to inflammation via the TLR9-NF-kappaB pathway in chronic heart failure patients. Molecular Immunology, 87, 114–121.CrossRefGoogle Scholar
  33. 33.
    Kim, H., Lee, O. H., Xin, H., Chen, L. Y., Qin, J., Chae, H. K., et al. (2009). TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nature Structural & Molecular Biology, 16(4), 372–379.CrossRefGoogle Scholar
  34. 34.
    Landsverk, H. B., Mora-Bermudez, F., Landsverk, O. J., Hasvold, G., Naderi, S., Bakke, O., et al. (2010). The protein phosphatase 1 regulator PNUTS is a new component of the DNA damage response. EMBO Reports, 11(11), 868–875.CrossRefGoogle Scholar
  35. 35.
    Loffredo, F. S., Pancoast, J. R., & Lee, R. T. (2013). Keep PNUTS in your heart. Circulation Research, 113(2), 97–99.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yang Liu
    • 1
  • Zhuyuan Liu
    • 2
  • Yuan Xie
    • 1
  • Cuimei Zhao
    • 1
  • Jiahong Xu
    • 1
  1. 1.Department of Cardiology, Tongji HospitalTongji University School of MedicineShanghaiChina
  2. 2.Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations