Advertisement

New Insights into the Role of Exosomes in the Heart After Myocardial Infarction

  • Na LiEmail author
  • Luc Rochette
  • Yongxin Wu
  • Nathalie Rosenblatt-Velin
Review

Abstract

Intercellular communications play a pivotal role in several cardiac pathophysiological processes. One subtype of extracellular vesicles, so-called exosomes, became known as important intercellular communication mediators in the heart. Exosomes are lipid bilayer biological nanovesicles loaded with diverse proteins, lipids, and mRNAs/microRNAs. All major cardiac cell types can modulate recipient cellular function via the release of exosomes. After myocardial infarction (MI), exosomes, especially those secreted by different cardiac stem cells, have been shown to confer cardioprotective effects, activate regenerative signals, and participate into cardiac repair. In this review, we rapidly recall the biology of exosomes at the beginning. Then we summarize the exosomes secreted by different myocardial cells and their function in cardiac intercellular communication. At last, we discuss the role of these vesicles in cardiac repair after MI.

Keywords

Exosomes Cardiac cells Myocardial infarction Stem cell therapy 

Abbreviations

CMs

Cardiomyocytes

CPCs

Cardiac progenitor cells

CDCs

Cardiospheres-derived cells

ECs

Endothelial cells

EVs

Extracellular vesicles

ESCs

Embryonic stem cells

EEs

Early endosomes

FBs

Fibroblasts

ILVs

Intraluminal vesicles

iPSCs

Induced pluripotent stem cells

LEs

Late endosomes

MVBs

Multivesicular bodies

miRNAs

MicroRNAs

MI

Myocardial infarction

MSCs

Mesenchymal stem cells

SMCs

Smooth muscle cells

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This review article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Reimer, K. A., Lowe, J. E., Rasmussen, M. M., & Jennings, R. B. (1977). The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation, 56(5), 786–794.CrossRefGoogle Scholar
  2. 2.
    Reimer, K. A., & Jennings, R. B. (1979). The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Laboratory Investigation, 40(6), 633–644.PubMedGoogle Scholar
  3. 3.
    Konstantinidis, K., Whelan, R. S., & Kitsis, R. N. (2012). Mechanisms of cell death in heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(7), 1552–1562.  https://doi.org/10.1161/ATVBAHA.111.224915.CrossRefPubMedGoogle Scholar
  4. 4.
    Curley, D., Lavin Plaza, B., Shah, A. M., & Botnar, R. M. (2018). Molecular imaging of cardiac remodelling after myocardial infarction. Basic Research in Cardiology, 113(2), 10.  https://doi.org/10.1007/s00395-018-0668-z.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yuan, M. J., Maghsoudi, T., & Wang, T. (2016). Exosomes mediate the intercellular communication after myocardial infarction. International Journal of Medical Sciences, 13(2), 113–116.  https://doi.org/10.7150/ijms.14112.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114(2), 333–344.  https://doi.org/10.1161/CIRCRESAHA.114.300639.CrossRefPubMedGoogle Scholar
  7. 7.
    Sluijter, J. P., Verhage, V., Deddens, J. C., van den Akker, F., & Doevendans, P. A. (2014). Microvesicles and exosomes for intracardiac communication. Cardiovascular Research, 102(2), 302–311.  https://doi.org/10.1093/cvr/cvu022.CrossRefPubMedGoogle Scholar
  8. 8.
    Iaconetti, C., Sorrentino, S., De Rosa, S., & Indolfi, C. (2016). Exosomal miRNAs in heart disease. Physiology (Bethesda), 31(1), 16–24.  https://doi.org/10.1152/physiol.00029.2015.CrossRefGoogle Scholar
  9. 9.
    Cocucci, E., & Meldolesi, J. (2015). Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends in Cell Biology, 25(6), 364–372.  https://doi.org/10.1016/j.tcb.2015.01.004.CrossRefPubMedGoogle Scholar
  10. 10.
    Arenaccio, C., & Federico, M. (2017). The multifaceted functions of exosomes in health and disease: an overview. Advances in Experimental Medicine and Biology, 998, 3–19.  https://doi.org/10.1007/978-981-10-4397-0_1.CrossRefPubMedGoogle Scholar
  11. 11.
    Thery, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nature Reviews. Immunology, 9(8), 581–593.  https://doi.org/10.1038/nri2567.CrossRefPubMedGoogle Scholar
  12. 12.
    Keller, S., Ridinger, J., Rupp, A. K., Janssen, J. W., & Altevogt, P. (2011). Body fluid derived exosomes as a novel template for clinical diagnostics. Journal of Translational Medicine, 9, 86.  https://doi.org/10.1186/1479-5876-9-86.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thery, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579.  https://doi.org/10.1038/nri855.CrossRefPubMedGoogle Scholar
  14. 14.
    Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.  https://doi.org/10.1038/ncb1596.CrossRefPubMedGoogle Scholar
  15. 15.
    Conigliaro, A., Fontana, S., Raimondo, S., & Alessandro, R. (2017). Exosomes: nanocarriers of biological messages. Advances in Experimental Medicine and Biology, 998, 23–43.  https://doi.org/10.1007/978-981-10-4397-0_2.CrossRefPubMedGoogle Scholar
  16. 16.
    Braicu, C., Tomuleasa, C., Monroig, P., Cucuianu, A., Berindan-Neagoe, I., & Calin, G. A. (2015). Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death and Differentiation, 22(1), 34–45.  https://doi.org/10.1038/cdd.2014.130.CrossRefPubMedGoogle Scholar
  17. 17.
    Thomou, T., Mori, M. A., Dreyfuss, J. M., Konishi, M., Sakaguchi, M., Wolfrum, C., et al. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542(7642), 450–455.  https://doi.org/10.1038/nature21365.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cheng, C., Wang, Q., You, W., Chen, M., & Xia, J. (2014). MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One, 9(2), e88566.  https://doi.org/10.1371/journal.pone.0088566.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation. Cardiovascular Genetics, 4(4), 446–454.  https://doi.org/10.1161/CIRCGENETICS.110.958975.CrossRefPubMedGoogle Scholar
  20. 20.
    Cheng, Y., Wang, X., Yang, J., Duan, X., Yao, Y., Shi, X., et al. (2012). A translational study of urine miRNAs in acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 53(5), 668–676.  https://doi.org/10.1016/j.yjmcc.2012.08.010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Emanueli, C., Shearn, A. I., Laftah, A., Fiorentino, F., Reeves, B. C., Beltrami, C., et al. (2016). Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One, 11(4), e0154274.  https://doi.org/10.1371/journal.pone.0154274.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Deddens, J. C., Vrijsen, K. R., Colijn, J. M., Oerlemans, M. I., Metz, C. H., van der Vlist, E. J., et al. (2016). Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac injury. Journal of Cardiovascular Translational Research, 9(4), 291–301.  https://doi.org/10.1007/s12265-016-9705-1.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    De Rosa, S., Fichtlscherer, S., Lehmann, R., Assmus, B., Dimmeler, S., & Zeiher, A. M. (2011). Transcoronary concentration gradients of circulating microRNAs. Circulation, 124(18), 1936–1944.  https://doi.org/10.1161/CIRCULATIONAHA.111.037572.CrossRefPubMedGoogle Scholar
  24. 24.
    Matsumoto, S., Sakata, Y., Suna, S., Nakatani, D., Usami, M., Hara, M., et al. (2013). Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circulation Research, 113(3), 322–326.  https://doi.org/10.1161/CIRCRESAHA.113.301209.CrossRefPubMedGoogle Scholar
  25. 25.
    Jansen, F., Yang, X., Proebsting, S., Hoelscher, M., Przybilla, D., Baumann, K., et al. (2014). MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association, 3(6), e001249.  https://doi.org/10.1161/JAHA.114.001249.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lu, M., Yuan, S., Li, S., Li, L., Liu, M., & Wan, S. (2018). The exosome-derived biomarker in atherosclerosis and its clinical application. Journal of Cardiovascular Translational Research.  https://doi.org/10.1007/s12265-018-9796-y.
  27. 27.
    Bi, S., Wang, C., Jin, Y., Lv, Z., Xing, X., & Lu, Q. (2015). Correlation between serum exosome derived miR-208a and acute coronary syndrome. International Journal of Clinical and Experimental Medicine, 8(3), 4275–4280.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Li, P., Liu, Z., Xie, Y., Gu, H., Dai, Q., Yao, J., et al. (2018). Serum exosomes attenuate H2O2-induced apoptosis in rat H9C2 cardiomyocytes via ERK1/2. Journal of Cardiovascular Translational Research.  https://doi.org/10.1007/s12265-018-9791-3.
  29. 29.
    Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.  https://doi.org/10.1016/j.jacc.2015.02.026.CrossRefPubMedGoogle Scholar
  30. 30.
    Bei, Y., Xu, T., Lv, D., Yu, P., Xu, J., Che, L., et al. (2017). Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Research in Cardiology, 112(4), 38.  https://doi.org/10.1007/s00395-017-0628-z.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sun, Z., Yang, S., Zhou, Q., Wang, G., Song, J., Li, Z., et al. (2018). Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Molecular Cancer, 17(1), 82.  https://doi.org/10.1186/s12943-018-0831-z.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bar, C., Chatterjee, S., & Thum, T. (2016). Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation, 134(19), 1484–1499.  https://doi.org/10.1161/CIRCULATIONAHA.116.023686.CrossRefPubMedGoogle Scholar
  33. 33.
    Vausort, M., Wagner, D. R., & Devaux, Y. (2014). Long noncoding RNAs in patients with acute myocardial infarction. Circulation Research, 115(7), 668–677.  https://doi.org/10.1161/CIRCRESAHA.115.303836.CrossRefPubMedGoogle Scholar
  34. 34.
    Creemers, E. E., & van Rooij, E. (2016). Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circulation Research, 118(1), 108–118.  https://doi.org/10.1161/CIRCRESAHA.115.305242.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, Y., Sun, L., Xuan, L., Pan, Z., Li, K., Liu, S., et al. (2016). Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Scientific Reports, 6, 22384.  https://doi.org/10.1038/srep22384.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Loyer, X., Vion, A. C., Tedgui, A., & Boulanger, C. M. (2014). Microvesicles as cell-cell messengers in cardiovascular diseases. Circulation Research, 114(2), 345–353.  https://doi.org/10.1161/CIRCRESAHA.113.300858.CrossRefPubMedGoogle Scholar
  37. 37.
    Barile, L., Gherghiceanu, M., Popescu, L. M., Moccetti, T., & Vassalli, G. (2012). Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. Journal of Biomedicine & Biotechnology, 2012, 354605.  https://doi.org/10.1155/2012/354605.CrossRefGoogle Scholar
  38. 38.
    Gupta, S., & Knowlton, A. A. (2007). HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. American Journal of Physiology. Heart and Circulatory Physiology, 292(6), H3052–H3056.  https://doi.org/10.1152/ajpheart.01355.2006.CrossRefPubMedGoogle Scholar
  39. 39.
    Malik, Z. A., Kott, K. S., Poe, A. J., Kuo, T., Chen, L., Ferrara, K. W., et al. (2013). Cardiac myocyte exosomes: stability, HSP60, and proteomics. American Journal of Physiology. Heart and Circulatory Physiology, 304(7), H954–H965.  https://doi.org/10.1152/ajpheart.00835.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Genneback, N., Hellman, U., Malm, L., Larsson, G., Ronquist, G., Waldenstrom, A., et al. (2013). Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. Journal of Extracellular Vesicles, 2.  https://doi.org/10.3402/jev.v2i0.20167.
  41. 41.
    Yu, X., Deng, L., Wang, D., Li, N., Chen, X., Cheng, X., et al. (2012). Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. Journal of Molecular and Cellular Cardiology, 53(6), 848–857.  https://doi.org/10.1016/j.yjmcc.2012.10.002.CrossRefPubMedGoogle Scholar
  42. 42.
    Yang, Y., Li, Y., Chen, X., Cheng, X., Liao, Y., & Yu, X. (2016). Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl), 94(6), 711–724.  https://doi.org/10.1007/s00109-016-1387-2.CrossRefGoogle Scholar
  43. 43.
    Zhang, X., Wang, X., Zhu, H., Kranias, E. G., Tang, Y., Peng, T., et al. (2012). Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One, 7(3), e32765.  https://doi.org/10.1371/journal.pone.0032765.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang, X., Huang, W., Liu, G., Cai, W., Millard, R. W., Wang, Y., et al. (2014). Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. Journal of Molecular and Cellular Cardiology, 74, 139–150.  https://doi.org/10.1016/j.yjmcc.2014.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P., & Diez-Juan, A. (2016). Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovascular Research, 109(3), 397–408.  https://doi.org/10.1093/cvr/cvv260.CrossRefPubMedGoogle Scholar
  46. 46.
    Garcia, N. A., Ontoria-Oviedo, I., Gonzalez-King, H., Diez-Juan, A., & Sepulveda, P. (2015). Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One, 10(9), e0138849.  https://doi.org/10.1371/journal.pone.0138849.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., et al. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood, 121(19), 3997–4006, S3991-3915.  https://doi.org/10.1182/blood-2013-02-478925.CrossRefPubMedGoogle Scholar
  48. 48.
    Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14(3), 249–256.  https://doi.org/10.1038/ncb2441.CrossRefPubMedGoogle Scholar
  49. 49.
    Mayo, J. N., & Bearden, S. E. (2015). Driving the hypoxia-inducible pathway in human pericytes promotes vascular density in an exosome-dependent manner. Microcirculation, 22(8), 711–723.  https://doi.org/10.1111/micc.12227.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Halkein, J., Tabruyn, S. P., Ricke-Hoch, M., Haghikia, A., Nguyen, N. Q., Scherr, M., et al. (2013). MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. The Journal of Clinical Investigation, 123(5), 2143–2154.  https://doi.org/10.1172/JCI64365.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bang, C., Batkai, S., Dangwal, S., Gupta, S. K., Foinquinos, A., Holzmann, A., et al. (2014). Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. The Journal of Clinical Investigation, 124(5), 2136–2146.  https://doi.org/10.1172/JCI70577.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lyu, L., Wang, H., Li, B., Qin, Q., Qi, L., Nagarkatti, M., et al. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 89(Pt B), 268–279.  https://doi.org/10.1016/j.yjmcc.2015.10.022.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Manole, C. G., Cismasiu, V., Gherghiceanu, M., & Popescu, L. M. (2011). Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. Journal of Cellular and Molecular Medicine, 15(11), 2284–2296.  https://doi.org/10.1111/j.1582-4934.2011.01449.x.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gray, W. D., French, K. M., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., Platt, M. O., et al. (2015). Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116(2), 255–263.  https://doi.org/10.1161/CIRCRESAHA.116.304360.CrossRefPubMedGoogle Scholar
  55. 55.
    Chen, L., Wang, Y., Pan, Y., Zhang, L., Shen, C., Qin, G., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431(3), 566–571.  https://doi.org/10.1016/j.bbrc.2013.01.015.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vrijsen, K. R., Sluijter, J. P., Schuchardt, M. W., van Balkom, B. W., Noort, W. A., Chamuleau, S. A., et al. (2010). Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Journal of Cellular and Molecular Medicine, 14(5), 1064–1070.  https://doi.org/10.1111/j.1582-4934.2010.01081.x.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Le, T., & Chong, J. (2016). Cardiac progenitor cells for heart repair. Cell Death & Disease, 2, 16052.  https://doi.org/10.1038/cddiscovery.2016.52.CrossRefGoogle Scholar
  58. 58.
    Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541.  https://doi.org/10.1093/cvr/cvu167.CrossRefPubMedGoogle Scholar
  59. 59.
    Ibrahim, A. G., Cheng, K., & Marban, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619.  https://doi.org/10.1016/j.stemcr.2014.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bei, Y., Das, S., Rodosthenous, R. S., Holvoet, P., Vanhaverbeke, M., Monteiro, M. C., et al. (2017). Extracellular vesicles in cardiovascular theranostics. Theranostics, 7(17), 4168–4182.  https://doi.org/10.7150/thno.21274.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.CrossRefGoogle Scholar
  62. 62.
    Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.  https://doi.org/10.1161/CIRCULATIONAHA.106.655209.CrossRefPubMedGoogle Scholar
  63. 63.
    Wang, Z., Su, X., Ashraf, M., Kim, I. M., Weintraub, N. L., Jiang, M., et al. (2018). Regenerative therapy for cardiomyopathies. Journal of Cardiovascular Translational Research.  https://doi.org/10.1007/s12265-018-9807-z.
  64. 64.
    Rosenblatt-Velin, N., Badoux, S., & Liaudet, L. (2016). Pharmacological therapy in the heart as an alternative to cellular therapy: a place for the brain natriuretic peptide? Stem Cells International, 2016, 5961342.  https://doi.org/10.1155/2016/5961342.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bielmann, C., Rignault-Clerc, S., Liaudet, L., Li, F., Kunieda, T., Sogawa, C., et al. (2015). Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth. Basic Research in Cardiology, 110(1), 455.  https://doi.org/10.1007/s00395-014-0455-4.CrossRefPubMedGoogle Scholar
  66. 66.
    Rignault-Clerc, S., Bielmann, C., Liaudet, L., Waeber, B., Feihl, F., & Rosenblatt-Velin, N. (2017). Natriuretic peptide receptor B modulates the proliferation of the cardiac cells expressing the stem cell Antigen-1. Scientific Reports, 7, 41936.  https://doi.org/10.1038/srep41936.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chimenti, I., Smith, R. R., Li, T. S., Gerstenblith, G., Messina, E., Giacomello, A., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106(5), 971–980.  https://doi.org/10.1161/CIRCRESAHA.109.210682.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216.  https://doi.org/10.1161/CIRCRESAHA.109.197723.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38(3), 212–215.  https://doi.org/10.1093/eurheartj/ehw324.CrossRefPubMedGoogle Scholar
  70. 70.
    Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222.  https://doi.org/10.1016/j.scr.2009.12.003.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang, H., Xiang, M., Meng, D., Sun, N., & Chen, S. (2016). Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells. Stem Cells International, 2016, 4328362.  https://doi.org/10.1155/2016/4328362.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kervadec, A., Bellamy, V., El Harane, N., Arakelian, L., Vanneaux, V., Cacciapuoti, I., et al. (2016). Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. The Journal of Heart and Lung Transplantation, 35(6), 795–807.  https://doi.org/10.1016/j.healun.2016.01.013.CrossRefPubMedGoogle Scholar
  73. 73.
    Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119(1), 91–112.  https://doi.org/10.1161/CIRCRESAHA.116.303577.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Heusch, G., & Gersh, B. J. (2017). The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. European Heart Journal, 38(11), 774–784.  https://doi.org/10.1093/eurheartj/ehw224.CrossRefPubMedGoogle Scholar
  75. 75.
    Sun, T., Dong, Y. H., Du, W., Shi, C. Y., Wang, K., Tariq, M. A., et al. (2017). The role of microRNAs in myocardial infarction: from molecular mechanism to clinical application. International Journal of Molecular Sciences, 18(4).  https://doi.org/10.3390/ijms18040745.
  76. 76.
    Rotini, A., Martinez-Sarra, E., Pozzo, E., & Sampaolesi, M. (2018). Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacological Research, 127, 58–66.  https://doi.org/10.1016/j.phrs.2017.05.029.CrossRefPubMedGoogle Scholar
  77. 77.
    Xiao, J., Pan, Y., Li, X. H., Yang, X. Y., Feng, Y. L., Tan, H. H., et al. (2016). Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death & Disease, 7(6), e2277.  https://doi.org/10.1038/cddis.2016.181.CrossRefGoogle Scholar
  78. 78.
    Cambier, L., de Couto, G., Ibrahim, A., Echavez, A. K., Valle, J., Liu, W., et al. (2017). Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Molecular Medicine, 9(3), 337–352.  https://doi.org/10.15252/emmm.201606924.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gallet, R., Dawkins, J., Valle, J., Simsolo, E., de Couto, G., Middleton, R., et al. (2017). Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. European Heart Journal, 38(3), 201–211.  https://doi.org/10.1093/eurheartj/ehw240.CrossRefPubMedGoogle Scholar
  80. 80.
    Yu, B., Kim, H. W., Gong, M., Wang, J., Millard, R. W., Wang, Y., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360.  https://doi.org/10.1016/j.ijcard.2014.12.043.CrossRefPubMedGoogle Scholar
  81. 81.
    Feng, Y., Huang, W., Wani, M., Yu, X., & Ashraf, M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 9(2), e88685.  https://doi.org/10.1371/journal.pone.0088685.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.  https://doi.org/10.1016/j.scr.2013.01.002.CrossRefPubMedGoogle Scholar
  83. 83.
    Xie, Y., Ibrahim, A., Cheng, K., Wu, Z., Liang, W., Malliaras, K., et al. (2014). Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells, 32(9), 2397–2406.  https://doi.org/10.1002/stem.1736.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.  https://doi.org/10.1161/CIRCRESAHA.117.305990.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine (Berlin), 92(4), 387–397.  https://doi.org/10.1007/s00109-013-1110-5.CrossRefGoogle Scholar
  86. 86.
    Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424.  https://doi.org/10.1159/000438594.CrossRefPubMedGoogle Scholar
  87. 87.
    Vrijsen, K. R., Maring, J. A., Chamuleau, S. A., Verhage, V., Mol, E. A., Deddens, J. C., et al. (2016). Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Advanced Healthcare Materials, 5(19), 2555–2565.  https://doi.org/10.1002/adhm.201600308.CrossRefPubMedGoogle Scholar
  88. 88.
    Anderson, J. D., Johansson, H. J., Graham, C. S., Vesterlund, M., Pham, M. T., Bramlett, C. S., et al. (2016). Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells, 34(3), 601–613.  https://doi.org/10.1002/stem.2298.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ong, S. G., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., et al. (2014). Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation, 130(11 Suppl 1), S60–S69.  https://doi.org/10.1161/CIRCULATIONAHA.113.007917.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5(1).  https://doi.org/10.1161/JAHA.115.002856.
  91. 91.
    Kalra, H., Drummen, G. P., & Mathivanan, S. (2016). Focus on extracellular vesicles: introducing the next small big thing. International Journal of Molecular Sciences, 17(2), 170.  https://doi.org/10.3390/ijms17020170.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité de Physiopathologie Clinique, Département cœur-vaisseauxCentre Hospitalier Universitaire Vaudois and University of LausanneLausanneSwitzerland
  2. 2.Research team Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA7460)University of Bourgogne Franche-ComtéDijonFrance
  3. 3.FEMTO-ST InstituteUniversity of Bourgogne Franche-ComtéBesançonFrance

Personalised recommendations