Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury

  • 261 Accesses

  • 2 Citations


Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Sarapultsev, P., Chupakhin, O., Sarapultsev, A., Rantsev, M., Sidorova, L., Medvedeva, S., et al. (2012). New insights in to the treatment of myocardial infarction. International Journal of Experimental Pathology, 93(1), 18–23.

  2. 2.

    Athappan, G., Patvardhan, E., Tuzcu, M. E., Ellis, S., Whitlow, P., & Kapadia, S. R. (2013). Left main coronary artery stenosis: a meta-analysis of drug-eluting stents versus coronary artery bypass grafting. JACC. Cardiovascular Interventions, 6(12), 1219–1230.

  3. 3.

    Mohsin, S., Siddiqi, S., Collins, B., & Sussman, M. A. (2011). Empowering adult stem cells for myocardial regeneration. Circulation Research, 109(12), 1415–1428.

  4. 4.

    Pudil, R., Pidrman, V., Krejsek, J., Gregor, J., Tichý, M., Andrýs, C., et al. (1999). Cytokines and adhesion molecules in the course of acute myocardial infarction. Clinica Chimica Acta, 280(1–2), 127–134.

  5. 5.

    Caiado, F., & Dias, S. (2012). Endothelial progenitor cells and integrins: Adhesive needs. Fibrogenesis & Tissue Repair, 5(1), 4.

  6. 6.

    Adamiak, M., Abdelbaset-Ismail, A., Moore, J. B. T., Zhao, J., Abdel-Latif, A., Wysoczynski, M., et al. (2017). Inducible nitric oxide synthase (iNOS) is a novel negative regulator of hematopoietic stem/progenitor cell trafficking. Stem Cell Reviews, 13(1), 92–103.

  7. 7.

    Zhao, T., Zhao, W., Chen, Y., Ahokas, R. A., & Sun, Y. (2010). Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvascular Research, 80(2), 188–194.

  8. 8.

    Wei, Y. J., Tang, Y., Li, J., Cui, C. J., Zhang, H., Zhang, X. L., et al. (2007). Cloning and expression pattern of dog SDF-1 and the implications of altered expression of SDF-1 in ischemic myocardium. Cytokine, 40(1), 52–59.

  9. 9.

    Leone, A. M., Rutella, S., Bonanno, G., Contemi, A. M., Ritis, D. G. D., Giannico, M. B., et al. (2006). Endogenous G-CSF and CD34 + cell mobilization after acute myocardial infarction. International Journal of Cardiology, 111(2), 202–208.

  10. 10.

    Min, W. I., Mak, S., Mann, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999). Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium. Circulation, 99(11), 1492–1498.

  11. 11.

    Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.

  12. 12.

    Li, X., He, X. T., Yin, Y., Wu, R. X., Tian, B. M., & Chen, F. M. (2017). Administration of signalling molecules dictates stem cell homing for in situ regeneration. Journal of Cellular & Molecular Medicine, 21(12), 3162–3177.

  13. 13.

    Xue, J., Du, G., Shi, J., Li, Y., Yasutake, M., Liu, L., et al. (2014). Combined treatment with erythropoietin and granulocyte colony-stimulating factor enhances neovascularization and improves cardiac function after myocardial infarction. Chinese Medical Journal (English), 127(9), 1677.

  14. 14.

    Jarrah, A. A., Schwarskopf, M., Wang, E. R., LaRocca, T., Dhume, A., Zhang, S., et al. (2018). SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis, 23(1), 79–91.

  15. 15.

    Ping, J., Zhao, Y., Hui, L., Chen, J., Ren, J., Jin, J., et al. (2016). Interferon-γ and tumor necrosis factor-α polarize bone marrow stromal cells uniformly to a Th1 phenotype. Scientific Reports, 6, 26345.

  16. 16.

    Min, J. Y., Huang, X., Xiang, M., Meissner, A., Chen, Y., Ke, Q., et al. (2006). Homing of intravenously infused embryonic stem cell-derived cells to injured hearts after myocardial infarction. The Journal of Thoracic and Cardiovascular Surgery, 131(4), 889–897.

  17. 17.

    Fibbe, W. E., Pruijt, J. F. M., Kooyk, Y. V., Figdor, C. G., Opdenakker, G., & Willemze, R. (2000). The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Seminars in Hematology, 37(2), 19–24.

  18. 18.

    Schömig, K., Busch, G., Steppich, B., Sepp, D., Kaufmann, J., Stein, A., et al. (2006). Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. European Heart Journal, 27(9), 1032–1037.

  19. 19.

    Zhao, Y., & Zhang, H. (2016). Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy, 18(7), 816–827.

  20. 20.

    Aicher, A., Zeiher, A. M., & Dimmeler, S. (2005). Mobilizing endothelial progenitor cells. Hypertension, 45(3), 321–325.

  21. 21.

    Wojakowski, W., Landmesser, U., Bachowski, R., Jadczyk, T., & Tendera, M. (2012). Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 26(1), 23.

  22. 22.

    Du, F., Zhou, J., Gong, R., Huang, X., Pansuria, M., Virtue, A., et al. (2012). Endothelial progenitor cells in atherosclerosis. Frontiers in Bioscience, 17(3), 2327.

  23. 23.

    Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315.

  24. 24.

    Meloni, M., Caporali, A., Graiani, G., Lagrasta, C., Katare, R., Van Linthout, S., et al. (2010). Nerve growth factor promotes cardiac repair following myocardial infarction. Circulation Research, 106(7), 1275–1284.

  25. 25.

    Meloni, M., Cesselli, D., Caporali, A., Mangialardi, G., Avolio, E., Reni, C., et al. (2015). Cardiac nerve growth factor overexpression induces bone marrow-derived progenitor cells mobilization and homing to the infarcted heart. Molecular Therapy, 23(12), 1854–1866.

  26. 26.

    Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49(6), 966–971.

  27. 27.

    Huber, B. C., Fischer, R., Brunner, S., Groebner, M., Rischpler, C., Segeth, A., et al. (2010). Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing. American Journal of Physiology. Heart and Circulatory Physiology, 298(5), H1466.

  28. 28.

    Haider, H., Jiang, S., Idris, N. M., & Ashraf, M. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308.

  29. 29.

    Tang, J. M., Wang, J. N., Zhang, L., Zheng, F., Yang, J. Y., Kong, X., et al. (2011). VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovascular Research, 91(3), 402–411.

  30. 30.

    Sun, J., Zhao, Y., Li, Q., Chen, B., Hou, X., Xiao, Z., et al. (2016). Controlled release of collagen-binding SDF-1α improves cardiac function after myocardial infarction by recruiting endogenous stem cells. Scientific Reports, 6, 26683.

  31. 31.

    Sharma, M., Afrin, F., Satija, N., Tripathi, R. P., & Gangenahalli, G. U. (2011). Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells and Development, 20(6), 933.

  32. 32.

    Herrmann, M., Verrier, S., & Alini, M. (2015). Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair. Frontiers in Bioengineering and Biotechnology, 3(4), 79.

  33. 33.

    Zhao, T., Zhang, D., Millard, R. W., Ashraf, M., & Wang, Y. (2009). Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. American Journal of Physiology. Heart and Circulatory Physiology, 296(4), H976.

  34. 34.

    Wang, Y., Haider, H. K., Ahmad, N., Zhang, D., & Ashraf, M. (2006). Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. Journal of Molecular and Cellular Cardiology, 41(3), 478–487.

  35. 35.

    Shi, M., Li, J., Liao, L., Chen, B., Li, B., Chen, L., et al. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica, 92(7), 897.

  36. 36.

    Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697.

  37. 37.

    Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived Factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25(5), 293.

  38. 38.

    Mirahmadi, M., Ahmadiankia, N., Naderi-Meshkin, H., Heirani-Tabasi, A., Bidkhori, H. R., Afsharian, P., et al. (2016). Hypoxia and laser enhance expression of SDF-1 in muscles cells. Cellular and Molecular Biology (Noisy-le-Grand, France), 62(5), 31.

  39. 39.

    Lee, S. H., Wolf, P. L., Escudero, R., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. New England Journal of Medicine, 342(9), 626.

  40. 40.

    Huang, B., Qian, J., Ma, J., Huang, Z., Shen, Y., Chen, X., et al. (2014). Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Research & Therapy, 5(1), 22.

  41. 41.

    Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209.

  42. 42.

    Hu, X., Wei, L., Taylor, T. M., Wei, J., Zhou, X., Wang, J. A., et al. (2011). Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. American Journal of Physiology. Cell Physiology, 301(2), C362–C372.

  43. 43.

    Ratajczak, M. Z., Zubasurma, E., Kucia, M., Reca, R., Wojakowski, W., & Ratajczak, J. (2006). The pleiotropic effects of the SDF-1|[ndash]|CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 20(11), 1915.

  44. 44.

    Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45(4), 514.

  45. 45.

    Jujo, K., Hamada, H., Iwakura, A., Thorne, T., Sekiguchi, H., Clarke, T., et al. (2010). CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11008–11013.

  46. 46.

    Zhao, T., Zhang, D., Millard, R. W., Ashraf, M., & Wang, Y. (2009). Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. American Journal of Physiology. Heart and Circulatory Physiology, 296(4), H976–H986.

  47. 47.

    Yu, M., Takemura, G., Arai, M., Ohno, T., Onogi, H., Takahashi, T., et al. (2006). Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovascular Research, 71(3), 455–465.

  48. 48.

    Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687.

  49. 49.

    Trougakos, I. P., Poulakou, M., Stathatos, M., Chalikia, A., Melidonis, A., & Gonos, E. S. (2002). Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Experimental Gerontology, 37(10–11), 1175–1187.

  50. 50.

    Li, Y., Qu, J., Shelat, H., Gao, S., Wassler, M., & Geng, Y. J. (2010). Clusterin induces CXCR4 expression and migration of cardiac progenitor cells. Experimental Cell Research, 316(20), 3435–3442.

  51. 51.

    Tang, J., Wang, J., Kong, X., Yang, J., Guo, L., Zheng, F., et al. (2009). Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Experimental Cell Research, 315(20), 3521.

  52. 52.

    Ling, L., Gu, S., Cheng, Y., & Ding, L. (2018). bFGF promotes Sca1+ cardiac stem cell migration through activation of the PI3K/Akt pathway. Molecular Medicine Reports, 17(2), 2349–2356.

  53. 53.

    She, T., Wang, X., Gan, Y., Kuang, D., Yue, J., Ni, J., et al. (2012). Hyperglycemia suppresses cardiac stem cell homing to peri-infarcted myocardium via regulation of ERK1/2 and p38 MAPK activities. International Journal of Molecular Medicine, 30(6), 1313–1320.

  54. 54.

    Wan, J., Deng, Y., Guo, J., Xiao, G., Kuang, D., Zhu, Y., et al. (2011). Hyperhomocysteinemia inhibited cardiac stem cell homing into the peri-infarcted area post myocardial infarction in rats. Experimental and Molecular Pathology, 91(1), 411–418.

  55. 55.

    Kuang, D., Zhao, X., Xiao, G., Ni, J., Feng, Y., Wu, R., et al. (2008). Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Research in Cardiology, 103(3), 265.

  56. 56.

    Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., & Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42(4), 792–803.

  57. 57.

    Segers, V. F., Tokunou, T., Higgins, L. J., Macgillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116(15), 1683–1692.

  58. 58.

    Hu, X., Wang, J., Chen, J., Luo, R., He, A., Xie, X., et al. (2007). Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. European Journal of Cardio-Thoracic Surgery, 31(3), 438–443.

  59. 59.

    Wang, Y., Johnsen, H. E., Mortensen, S., Bindslev, L., Ripa, R. S., Haack-Sorensen, M., et al. (2006). Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart, 92(6), 768–774.

  60. 60.

    Liu, Z., Wang, H., Wang, Y., Lin, Q., Yao, A., Cao, F., et al. (2012). The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials, 33(11), 3093–3106.

  61. 61.

    Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L. J., & Zhang, J. (2007). Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Engineering, 13(8), 2063.

  62. 62.

    Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., et al. (2017). Abstract 15587: novel stem cell niches laminin 511 promotes functional angiogenesis through enhanced stem cell homing by modulating “stem cell beds” in the failed heart. Circulation, 136(Suppl 1), A15587–A15587.

  63. 63.

    Wu, R.-X., Yin, Y., He, X.-T., Li, X., & Chen, F.-M. (2017). Engineering a cell home for stem cell homing and accommodation. Advanced Biosystems, 1(4), 1700004.

  64. 64.

    Schantz, J. T., Chim, H., & Whiteman, M. (2007). Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Engineering Part A, 13(11), 2615–2624.

  65. 65.

    Thevenot, P. T., Nair, A. M., Shen, J., Lotfi, P., Ko, C. Y., & Tang, L. (2010). The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 31(14), 3997.

  66. 66.

    Elmadbouh, I., & Ashraf, M. (2017). Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair. Physiological Reports, 5(21), e13480.

  67. 67.

    Zhang, P., Duval, S., Su, L., et al. (2013). Thymosin beta 4 increases the potency of transplanted mesenchymal stem;cells for myocardial repair. Circulation, 128(11), S32–S41.

  68. 68.

    Burks, S. R., Ziadloo, A., Kim, S. J., Nguyen, B. A., & Frank, J. A. (2013). Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. Stem Cells, 31(11), 2551–2560.

  69. 69.

    Walczak, P., Zhang, J., Gilad, A. A., et al. (2008). Dual-modality monitoring of targeted Intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 39(5), 1569.

  70. 70.

    Mäkelä, J., Anttila, V., Ylitalo, K., Takalo, R., Lehtonen, S., Mäkikallio, T., et al. (2009). Acute homing of bone marrow-derived mononuclear cells in intramyocardial vs. intracoronary transplantation. Scandinavian Cardiovascular Journal, 43(6), 366–373.

  71. 71.

    Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y., et al. (2006). Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transplant International, 19(7), 570.

  72. 72.

    Kraitchman, D. L. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112(10), 1451–1461.

  73. 73.

    Li, X., & Hacker, M. (2017). Molecular imaging in stem cell-based therapies of cardiac diseases. Advanced Drug Delivery Reviews, 120, 71–88.

  74. 74.

    Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581.

  75. 75.

    Devine, S. M., Bartholomew, A. M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., et al. (2001). Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 29(2), 244–255.

  76. 76.

    Jasmin, de Souza, G. T., Louzada, R. A., Rosadodecastro, P. H., Mendezotero, R., & Ac, C. D. C.,. (2017). Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. International Journal of Nanomedicine, 12, 779–793.

  77. 77.

    Bos, C., Delmas, Y., Desmoulière, A., Solanilla, A., Hauger, O., Grosset, C., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233(3), 781–789.

  78. 78.

    Wu, J., Sun, Z., Sun, H. S., Wu, J., Weisel, R. D., Keating, A., et al. (2008). Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplantation, 16(10), 993.

  79. 79.

    Meleshina, A. V., Cherkasova, E. I., Shirmanova, M. V., Khrapichev, A. A., Dudenkova, V. V., & Zagaynova, E. V. (2015). Modern techniques for stem cells in vivo imaging (review). Sovremennye Tehnologii v Medicine, 7(4), 174–188.

  80. 80.

    Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., et al. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290–2293.

  81. 81.

    Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112(10), 1451.

  82. 82.

    Crich, S. G., Biancone, L. V., Duo, D., Esposito, G., Russo, S., Camussi, G., et al. (2004). Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magnetic Resonance in Medicine, 51(5), 938–944.

  83. 83.

    Vandeputte, C., Thomas, D., Dresselaers, T., Crabbe, A., Verfaillie, C., Baekelandt, V., et al. (2011). Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Molecular Imaging and Biology, 13(4), 663–671.

  84. 84.

    Bansal, A., Pandey, M. K., Demirhan, Y. E., Nesbitt, J. J., Crespo-Diaz, R. J., Terzic, A., et al. (2015). Novel (89)Zr cell labeling approach for PET-based cell trafficking studies. EJNMMI Research, 5, 19.

  85. 85.

    Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198.

  86. 86.

    Brenner, W., Aicher, A., Eckey, T., Massoudi, S., Zuhayra, M., Koehl, U., et al. (2004). 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. Journal of Nuclear Medicine, 45(3), 512–518.

  87. 87.

    Sheikh, A. Y., Lin, S. A., Cao, F., Cao, Y., Bogt, K. E. A. V. D., Chu, P., et al. (2007). Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells, 25(10), 2677–2684.

  88. 88.

    Supokawej, A., Nimsanor, N., Sanvoranart, T., Kaewsaneha, C., Hongeng, S., Tangboriboonrat, P., et al. (2015). Mesenchymal stem cell in vitro labeling by hybrid fluorescent magnetic polymeric particles for application in cell tracking. Medical Molecular Morphology, 48(4), 204–213.

  89. 89.

    Wu, J. C., Chen, I. Y., Sundaresan, G., Min, J. J., De, A., Qiao, J. H., et al. (2003). Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation, 2(3), 1302–1305.

  90. 90.

    Beeres, S. L., Bengel, F. M., Bartunek, J., Atsma, D. E., Hill, J. M., Vanderheyden, M., et al. (2007). Role of imaging in cardiac stem cell therapy. Journal of the American College of Cardiology, 49(11), 1137–1148.

  91. 91.

    Theiss, H. D., Brenner, C., Engelmann, M. G., Zaruba, M. M., Huber, B., Henschel, V., et al. (2010). Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-trial)--rationale, design and first interim analysis. International Journal of Cardiology, 145(2), 282–284.

  92. 92.

    Brenner, C., Adrion, C., Grabmaier, U., Theisen, D., von Ziegler, F., Leber, A., et al. (2016). Sitagliptin plus granulocyte colony-stimulating factor in patients suffering from acute myocardial infarction: a double-blind, randomized placebo-controlled trial of efficacy and safety (SITAGRAMI trial). International Journal of Cardiology, 205, 23–30.

  93. 93.

    Sridharan, R., Karp, J. M., & Zhao, W. (2014). Bioengineering tools to elucidate and control the fate of transplanted stem cells. Biochemical Society Transactions, 42(3), 679–687.

Download references


I sincerely thank for the invaluable help from Dr. Xin Chen, who is my supervisor and a fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University. I apologize to those whose work cannot be cited or referred in detail by restrictions of space and format.


This study was funded by Jiangsu Provincial Special Program of Medical Science (BE2015612).

Author information

Correspondence to Xin Chen.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animal studies.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Tan, S., Chen, W. et al. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J. of Cardiovasc. Trans. Res. 11, 403–411 (2018).

Download citation


  • Stem cell
  • Homing
  • Therapy