Journal of Cardiovascular Translational Research

, Volume 11, Issue 5, pp 420–428 | Cite as

Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes Promotes Repair in Ischemic Myocardium

  • Chengwei Ju
  • Yan Shen
  • Gengshan Ma
  • Yutao Liu
  • Jingwen Cai
  • Il-man Kim
  • Neal L. Weintraub
  • Naifeng LiuEmail author
  • Yaoliang TangEmail author
Original Article


Our previous study demonstrated the beneficial effects of exosomes secreted by cardiac mesenchymal stem cells (C-MSC-Exo) in protecting acute ischemic myocardium from reperfusion injury. Here, we investigated the effect of exosomes from C-MSC on angiogenesis in ischemic myocardium. We intramyocardially injected C-MSC-Exo or PBS into the infarct border zone after induction of acute mouse myocardial infarction (MI). We observed that hearts treated with C-MSC-Exo exhibit improved cardiac function compared to control hearts treated with PBS at one month after MI. Capillary density and Ki67-postive cells were significantly higher following treatment with C-MSC-Exo as compared with PBS. Moreover, C-MSC-Exo treatment increased cardiomyocyte proliferation in infarcted hearts. In conclusion, intramyocardial delivery of C-MSC-Exo after myocardial infarction enhances cardiac angiogenesis, promotes cardiomyocyte proliferation, and preserves heart function. C-MSC-Exo constitute a novel form of cell-free therapy for cardiac repair.


Cardiac mesenchymal stem cells Exosomes Myocardial infarction Angiogenesis 


Funding Information

I. Kim, N.L. Weintraub, and Y. Tang were partially supported by the American Heart Association: GRNT31430008, NIH-AR070029, NIH-HL086555, NIH-HL134354, and NIH -HL12425.

Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

All applicable institutional guidelines for the care and use of animals were followed.

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Roth, G. A., Huffman, M. D., Moran, A. E., Feigin, V., Mensah, G. A., Naghavi, M., et al. (2015). Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation, 132(17), 1667–1678.CrossRefGoogle Scholar
  2. 2.
    Porrello, E. R., Mahmoud, A. I., Simpson, E., Johnson, B. A., Grinsfelder, D., Canseco, D., et al. (2013). Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 187–192.CrossRefGoogle Scholar
  3. 3.
    Konstam, M. A., Kramer, D. G., Patel, A. R., Maron, M. S., & Udelson, J. E. (2011). Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovascular imaging., 4(1), 98–108.CrossRefGoogle Scholar
  4. 4.
    Wang Z, Su X, Ashraf M, Kim IM, Weintraub NL, Jiang M, et al. Regenerative therapy for cardiomyopathies. Journal of Cardiovascular Translational Research. 2018.Google Scholar
  5. 5.
    Djohan AH, Sia CH, Lee PS, Poh KK. Endothelial progenitor cells in heart failure: an authentic expectation for potential future use and a lack of universal definition. Journal of Cardiovascular Translational Research. 2018.Google Scholar
  6. 6.
    Hagan, M., Ashraf, M., Kim, I. M., Weintraub, N. L., & Tang, Y. (2018). Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Medical Hypotheses, 110, 97–100.CrossRefGoogle Scholar
  7. 7.
    Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378(9806), 1847–1857.CrossRefGoogle Scholar
  8. 8.
    Makkar, R. R., Smith, R. R., Cheng, K., Malliaras, K., Thomson, L. E., Berman, D., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 379(9819), 895–904.CrossRefGoogle Scholar
  9. 9.
    Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular And Cellular Cardiology, 50(2), 280–289.CrossRefGoogle Scholar
  10. 10.
    Burchfield, J. S., & Dimmeler, S. (2008). Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis & Tissue Repair, 1(1), 4.CrossRefGoogle Scholar
  11. 11.
    Ruan, X. F., Li, Y. J., Ju, C. W., Shen, Y., Lei, W., Chen, C., et al. (2018). Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacologica Sinica, 39(4), 579–586.CrossRefGoogle Scholar
  12. 12.
    Chen, L., Wang, Y., Pan, Y., Zhang, L., Shen, C., Qin, G., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431(3), 566–571.CrossRefGoogle Scholar
  13. 13.
    Tang, Y. L., Zhao, Q., Zhang, Y. C., Cheng, L., Liu, M., Shi, J., et al. (2004). Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regulatory peptides, 117(1), 3–10.CrossRefGoogle Scholar
  14. 14.
    Tang, Y. L., Zhao, Q., Qin, X., Shen, L., Cheng, L., Ge, J., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. The Annals of Thoracic Surgery, 80(1), 229–236 discussion 36-7.CrossRefGoogle Scholar
  15. 15.
    Sahoo, S., Klychko, E., Thorne, T., Misener, S., Schultz, K. M., Millay, M., et al. (2011). Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circulation Research., 109(7), 724–728.CrossRefGoogle Scholar
  16. 16.
    Mathiyalagan, P., Liang, Y., Kim, D., Misener, S., Thorne, T., Kamide, C. E., et al. (2017). Angiogenic mechanisms of human CD34(+) stem cell exosomes in the repair of ischemic hindlimb. Circulation research., 120(9), 1466–1476.CrossRefGoogle Scholar
  17. 17.
    Khan, M., & Kishore, R. (2017). Stem cell exosomes: cell-freetherapy for organ repair. Methods in molecular biology (Clifton, NJ), 1553, 315–321.CrossRefGoogle Scholar
  18. 18.
    Ruan, X. F., Ju, C. W., Shen, Y., Liu, Y. T., Kim, I. M., Yu, H., et al. (2018). Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 39(4), 569–578.CrossRefGoogle Scholar
  19. 19.
    Ni J, Sun Y, Liu Z. The potential of stem cells and stem cell-derived exosomes in treating cardiovascular diseases. Journal of Cardiovascular Translational Research. 2018.Google Scholar
  20. 20.
    Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L. Extracellular vesicles as conveyors of membrane-derived bioactive lipids in immune system. International journal of molecular sciences. 2018;19(4).CrossRefGoogle Scholar
  21. 21.
    Lu M, Yuan S, Li S, Li L, Liu M, Wan S. The exosome-derived biomarker in atherosclerosis and its clinical application. Journal of Cardiovascular Translational Research. 2018.Google Scholar
  22. 22.
    McBride, J. D., Rodriguez-Menocal, L., Guzman, W., Candanedo, A., Garcia-Contreras, M., & Badiavas, E. V. (2017). Bone marrow mesenchymal stem cell-derived CD63(+) exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells and Development., 26(19), 1384–1398.CrossRefGoogle Scholar
  23. 23.
    Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B., 6(4), 287–296.CrossRefGoogle Scholar
  24. 24.
    Liu X, Yuan W, Yang L, Li J, Cai J. miRNA profiling of exosomes from spontaneous hypertensive rats using next-generation sequencing. Journal of Cardiovascular Translational Research. 2018.Google Scholar
  25. 25.
    Sun, Z., Yang, S., Zhou, Q., Wang, G., Song, J., Li, Z., et al. (2018). Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Molecular cancer., 17(1), 82.CrossRefGoogle Scholar
  26. 26.
    Hagan, M., Zhou, M., Ashraf, M., Kim, I. M., Su, H., Weintraub, N. L., et al. (2017). Long noncoding RNAs and their roles in skeletal muscle fate determination. Non-coding RNA investigation., 1.CrossRefGoogle Scholar
  27. 27.
    Mayourian, J., Ceholski, D. K., Gorski, P. A., Mathiyalagan, P., Murphy, J. F., Salazar, S. I., et al. (2018). Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circulation Research., 122(7), 933–944.CrossRefGoogle Scholar
  28. 28.
    Mathiyalagan, P., & Sahoo, S. (2017). Exosomes-based gene therapy for MicroRNA delivery. Methods in molecular biology (Clifton, NJ), 1521, 139–152.CrossRefGoogle Scholar
  29. 29.
    Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology., 192, 61–69.CrossRefGoogle Scholar
  30. 30.
    Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of molecular medicine (Berlin, Germany), 92(4), 387–397.CrossRefGoogle Scholar
  31. 31.
    Luther KM, Haar L, McGuinness M, Wang Y, Lynch T, Phan A, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. Journal of Molecular and Cellular Cardiology. 2018.Google Scholar
  32. 32.
    Vrijsen, K. R., Maring, J. A., Chamuleau, S. A., Verhage, V., Mol, E. A., Deddens, J. C., et al. (2016). Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Advanced healthcare materials., 5(19), 2555–2565.CrossRefGoogle Scholar
  33. 33.
    Chen, L., Pan, Y., Zhang, L., Wang, Y., Weintraub, N., & Tang, Y. (2013). Two-step protocol for isolation and culture of cardiospheres. Methods in molecular biology (Clifton, NJ), 1036, 75–80.CrossRefGoogle Scholar
  34. 34.
    Chen, Z., Li, Y., Yu, H., Shen, Y., Ju, C., Ma, G., et al. (2017). Isolation of extracellular vesicles from stem cells. Methods in molecular biology (Clifton, NJ), 1660, 389–394.CrossRefGoogle Scholar
  35. 35.
    Helwa, I., Cai, J., Drewry, M. D., Zimmerman, A., Dinkins, M. B., Khaled, M. L., et al. (2017). A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 12(1), e0170628.CrossRefGoogle Scholar
  36. 36.
    Gao, L., Gregorich, Z. R., Zhu, W., Mattapally, S., Oduk, Y., Lou, X., et al. (2018). Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation, 137(16), 1712–1730.CrossRefGoogle Scholar
  37. 37.
    Zhang, L., Zhou, M., Qin, G., Weintraub, N. L., & Tang, Y. (2014). MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochemical and biophysical research communications., 446(4), 952–958.CrossRefGoogle Scholar
  38. 38.
    Chen L, Phillips MI, Miao HL, Zeng R, Qin G, Kim IM, et al. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts. PloS one. 2014;9(10):e107841.CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Zhou, M., Wang, X., Qin, G., Weintraub, N. L., & Tang, Y. (2014). Assessing in vitro stem-cell function and tracking engraftment of stem cells in ischaemic hearts by using novel iRFP gene labelling. Journal of cellular and molecular medicine., 18(9), 1889–1894.CrossRefGoogle Scholar
  40. 40.
    Tang, Y. L., Tang, Y., Zhang, Y. C., Qian, K., Shen, L., & Phillips, M. I. (2005). Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. Journal of the American College of Cardiology., 46(7), 1339–1350.CrossRefGoogle Scholar
  41. 41.
    Ruan XF, Ju CW, Shen Y, Liu YT, Kim IM, Yu H, et al. Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta pharmacologica Sinica. 2018.Google Scholar
  42. 42.
    Kim, S. W., Houge, M., Brown, M., Davis, M. E., & Yoon, Y. S. (2014). Cultured human bone marrow-derived CD31(+) cells are effective for cardiac and vascular repair through enhanced angiogenic, adhesion, and anti-inflammatory effects. Journal of the American College of Cardiology., 64(16), 1681–1694.CrossRefGoogle Scholar
  43. 43.
    Timmers, L., Lim, S. K., Hoefer, I. E., Arslan, F., Lai, R. C., van Oorschot, A. A., et al. (2011). Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem cell research., 6(3), 206–214.CrossRefGoogle Scholar
  44. 44.
    Amin, S., Banijamali, S. E., Tafazoli-Shadpour, M., Shokrgozar, M. A., Dehghan, M. M., Haghighipour, N., et al. (2014). Comparing the effect of equiaxial cyclic mechanical stimulation on GATA4 expression in adipose-derived and bone marrow-derived mesenchymal stem cells. Cell biology international., 38(2), 219–227.CrossRefGoogle Scholar
  45. 45.
    Yu, B., Kim, H. W., Gong, M., Wang, J., Millard, R. W., Wang, Y., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International journal of cardiology., 182, 349–360.CrossRefGoogle Scholar
  46. 46.
    Figeac F, Lesault PF, Le Coz O, Damy T, Souktani R, Trebeau C, et al. Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem cells (Dayton, Ohio). 2014;32(1):216–30.CrossRefGoogle Scholar
  47. 47.
    Shao, L., Zhang, Y., Lan, B., Wang, J., Zhang, Z., Zhang, L., et al. (2017). MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. BioMed research international., 2017, 4150705.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation research., 117(1), 52–64.CrossRefGoogle Scholar
  49. 49.
    Li, P., Liu, Z., Xie, Y., Gu, H., Dai, Q., Yao, J., et al. (2018). Serum exosomes attenuate H2O2-induced apoptosis in rat H9C2 cardiomyocytes via ERK1/2. Journal of cardiovascular translational research. Google Scholar
  50. 50.
    Campbell, C. R., Berman, A. E., Weintraub, N. L., & Tang, Y. L. (2016). Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Medical hypotheses., 88, 6–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology, Zhongda HospitalMedical School of Southeast UniversityNanjingChina
  2. 2.Vascular Biology Center, Medical College of GeorgiaAugusta UniversityAugustaUSA

Personalised recommendations