Advertisement

Patient-Specific Modeling of Hemodynamics: Supporting Surgical Planning in a Fontan Circulation Correction

  • Theodorus M. J. van Bakel
  • Kevin D. Lau
  • Jennifer Hirsch-Romano
  • Santi Trimarchi
  • Adam L. Dorfman
  • C. Alberto Figueroa
Original Article

Abstract

Computational fluid dynamics (CFD) is a modeling technique that enables calculation of the behavior of fluid flows in complex geometries. In cardiovascular medicine, CFD methods are being used to calculate patient-specific hemodynamics for a variety of applications, such as disease research, noninvasive diagnostics, medical device evaluation, and surgical planning. This paper provides a concise overview of the methods to perform patient-specific computational analyses using clinical data, followed by a case study where CFD-supported surgical planning is presented in a patient with Fontan circulation complicated by unilateral pulmonary arteriovenous malformations. In closing, the challenges for implementation and adoption of CFD modeling in clinical practice are discussed.

Keywords

Computational fluid dynamics Patient-specific modeling Hemodynamics Surgical planning Pulmonary arteriovenous malformations Single ventricle 

Abbreviations

2D

Two-dimensional

3D

Three-dimensional

AZV

Azygos vein

CAD

Computer-aided design

CFD

Computational fluid dynamics

CT

Computed tomography

CVPA

Cavopulmonary anastomosis

FN

Fontan conduit

FSI

Fluid structure interaction

HV

Hepatic vein

HVF

Hepatic venous flow

HPC

High performance computing

IVC

Inferior vena cava

LPA

Left pulmonary artery

LINV

Left innominate vein

MRA

Magnetic resonance angiography

PAVM

Pulmonary arteriovenous malformation

PC-MRI

Phase-contrast MRI

PWV

Pulse wave velocity

RINV

Right innominate vein

RPA

Right pulmonary artery

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 307532, the Edward B. Diethrich Professorship, the Bob and Ann Aikens Aortic Grants Program, and the Frankel Cardiovascular Center. Computing resources were provided by the National Science Foundation via grant 1531752 MRI: Acquisition of Conflux, A Novel Platform for Data-Driven Computational Physics (Tech. Monitor: Ed Walker).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest related to the contents of the manuscript.

Ethics Approval and Consent to Participate

All procedures followed were in accordance with the ethical standards of the institutional review board (University of Michigan record number HUM00136247) and with the Helsinki Declaration of 1975 and its later amendments. The need for patient consent for the preparation of this manuscript was waived.

References

  1. 1.
    Cecchi, E., Giglioli, C., Valente, S., Lazzeri, C., Gensini, G. F., Abbate, R., et al. (2011). Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis, 214, 249–256.  https://doi.org/10.1016/j.atherosclerosis.2010.09.008.CrossRefPubMedGoogle Scholar
  2. 2.
    Taylor, C. A., & Figueroa, C. A. (2009). Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering, 11, 109–134.  https://doi.org/10.1146/annurev.bioeng.10.061807.160521.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cuomo, F., Roccabianca, S., Dillon-Murphy, D., Xiao, N., Humphrey, J. D., & Figueroa, C. A. (2017). Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling. PLoS One, 12.  https://doi.org/10.1371/journal.pone.0173177.
  4. 4.
    Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. Journal of the American College of Cardiology, 61, 2233–2241.  https://doi.org/10.1016/j.jacc.2012.11.083.CrossRefPubMedGoogle Scholar
  5. 5.
    Figueroa, C. A., Yeh, V., Taylor, C. A., Gorrepati, M. L., & Zarins, C. K. (2010). In vivo displacement force (DF) is higher in patients who experience aortic endograft migration: a 3D computational analysis. Journal of Vascular Surgery, 51, 93S.CrossRefGoogle Scholar
  6. 6.
    Trusty, P. M., Wei, Z., Tree, M., Kanter, K. R., Fogel, M. A., Yoganathan, A. P., et al. (2017). Local hemodynamic differences between commercially available Y-Grafts and traditional fontan baffles under simulated exercise conditions: implications for exercise tolerance. Cardiovascular Engineering and Technology, 8, 390–399.  https://doi.org/10.1007/s13239-017-0310-5.
  7. 7.
    Nauta, F. J., Lau, K. D., Arthurs, C. J., Eagle, K. A., Williams, D. M., Trimarchi, S., et al. (2017). Computational fluid dynamics and aortic thrombus formation following thoracic endovascular aortic repair. The Annals of Thoracic Surgery.  https://doi.org/10.1016/j.athoracsur.2016.09.067.
  8. 8.
    Tang, E., Wei, Z., Whitehead, K. K., Khiabani, R. H., Restrepo, M., Mirabella, L., et al. (2017). Effect of Fontan geometry on exercise haemodynamics and its potential implications. Heart, 103, 1806–1812.  https://doi.org/10.1136/heartjnl-2016-310855.
  9. 9.
    Antiga L, Steinman DA. (2008). The vascular modeling toolkit. http://www.vmtk.org.
  10. 10.
  11. 11.
    CRIMSON. The software for Cardiovascular Modelling and Simulation n.d. http://www.crimson.software.
  12. 12.
    Vieira, M. S., Hussain, T., & Figueroa, C. A. (2015). Patient-specific image-based computational modeling in congenital heart disease: a clinician perspective. J Cardiol Ther, 2, 436–448.CrossRefGoogle Scholar
  13. 13.
    Sahni, O., Müller, J., Jansen, K. E., Shephard, M. S., & Taylor, C. A. (2006). Efficient anisotropic adaptive discretization of the cardiovascular system. Computer Methods in Applied Mechanics and Engineering, 195, 5634–5655.  https://doi.org/10.1016/j.cma.2005.10.018.CrossRefGoogle Scholar
  14. 14.
    Vignon-Clementel, I. E., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Computer Methods in Biomechanics and Biomedical Engineering, 13, 625–640.  https://doi.org/10.1080/10255840903413565.CrossRefPubMedGoogle Scholar
  15. 15.
    Alastruey, J., Xiao, N., Fok, H., Schaeffter, T., & Figueroa, C. A. (2016). On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J R Soc Interface, 13.  https://doi.org/10.1098/rsif.2016.0073.
  16. 16.
    Pelc, N. J., Sommer, F. G., Li, K. C., Brosnan, T. J., Herfkens, R. J., Enzmann, D. R., et al. (1994). Quantitative magnetic resonance flow imaging. Magnetic Resonance Quarterly, 10(3), 125–147.PubMedGoogle Scholar
  17. 17.
    Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). The essential physics of medical imaging (Third ed.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  18. 18.
    Hoskins, P., Martin, K., & Thrush, A. (2010). Diagnostic ultrasound: physics and equipment (2nd ed.). Cambridge: Cambridge University Press.  https://doi.org/10.2967/jnumed.112.105395.CrossRefGoogle Scholar
  19. 19.
    Gatehouse, P. D., Keegan, J., Crowe, L. A., Masood, S., Mohiaddin, R. H., Kreitner, K.-F., et al. (2005). Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. European Radiology, 15, 2172–2184.  https://doi.org/10.1007/s00330-005-2829-3.CrossRefPubMedGoogle Scholar
  20. 20.
    de Beaufort, H. W. L., Nauta, F. J. H., Conti, M., Cellitti, E., Trentin, C., Faggiano, E., et al. (2017). Extensibility and distensibility of the thoracic aorta in patients with aneurysm. European Journal of Vascular and Endovascular Surgery, 53, 199–205.  https://doi.org/10.1016/j.ejvs.2016.11.018.CrossRefPubMedGoogle Scholar
  21. 21.
    Cuomo, F., Ferruzzi, J., Humphrey, J. D., & Figueroa, C. A. (2015). An experimental–computational study of catheter induced alterations in pulse wave velocity in anesthetized mice. Annals of Biomedical Engineering, 43, 1555–1570.  https://doi.org/10.1007/s10439-015-1272-0.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fagard, R., & Conway, J. (1990). Measurement of cardiac output: Fick principle using catheterization. European Heart Journal, 11, 1–5.  https://doi.org/10.1093/eurheartj/11.suppl_I.1.CrossRefPubMedGoogle Scholar
  23. 23.
    Pugsley, J., & Lerner, A. B. (2010). Cardiac output monitoring: is there a gold standard and how do the newer technologies compare? Seminars in Cardiothoracic and Vascular Anesthesia, 14, 274–282.  https://doi.org/10.1177/1089253210386386.CrossRefPubMedGoogle Scholar
  24. 24.
    Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J. R., & Taylor, C. A. (2006). A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering, 195, 5685–5706.  https://doi.org/10.1016/j.cma.2005.11.011.CrossRefGoogle Scholar
  25. 25.
    Brown, A. G., Shi, Y., Marzo, A., Staicu, C., Valverde, I., Beerbaum, P., et al. (2012). Accuracy vs. computational time: translating aortic simulations to the clinic. Journal of Biomechanics, 45, 516–523.  https://doi.org/10.1016/j.jbiomech.2011.11.041.CrossRefPubMedGoogle Scholar
  26. 26.
    Prasad, A., To, L. K., Gorrepati, M. L., Zarins, C. K., & Figueroa, C. A. (2011). Computational analysis of stresses acting on intermodular junctions in thoracic aortic endografts. Journal of Endovascular Therapy, 18, 559–568.  https://doi.org/10.1583/11-3472.1.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Les, A. S., Shadden, S. C., Figueroa, C. A., Park, J. M., Tedesco, M. M., Herfkens, R. J., et al. (2010). Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Annals of Biomedical Engineering, 38, 1288–1313.  https://doi.org/10.1007/s10439-010-9949-x.CrossRefPubMedGoogle Scholar
  28. 28.
    Fontan, F., & Baudet, E. (1971). Surgical repair of tricuspid atresia. Thorax, 26, 240–248.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gewillig, M. (2005). The Fontan circulation. Heart, 91, 839–846.  https://doi.org/10.1136/hrt.2004.051789.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Duncan, B. W., & Desai, S. (2003). Pulmonary arteriovenous malformations after cavopulmonary anastomosis. The Annals of Thoracic Surgery, 76, 1759–1766.CrossRefPubMedGoogle Scholar
  31. 31.
    Srivastava, D., Preminger, T., Lock, J. E., Mandell, V., Keane, J. F., Mayer, J. E., et al. (1995). Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation, 92, 1217–1222.CrossRefPubMedGoogle Scholar
  32. 32.
    Pike, N. A., Vricella, L. A., Feinstein, J. A., Black, M. D., & Reitz, B. A. (2004). Regression of severe pulmonary arteriovenous malformations after Fontan revision and “hepatic factor” rerouting. The Annals of Thoracic Surgery, 78, 697–699.  https://doi.org/10.1016/j.athoracsur.2004.02.003.CrossRefPubMedGoogle Scholar
  33. 33.
    McElhinney, D. B., Marx, G. R., Marshall, A. C., Mayer, J. E., & Del Nido, P. J. (2011). Cavopulmonary pathway modification in patients with heterotaxy and newly diagnosed or persistent pulmonary arteriovenous malformations after a modified Fontan operation. The Journal of Thoracic and Cardiovascular Surgery, 141, 1362–70.e1.  https://doi.org/10.1016/j.jtcvs.2010.08.088.CrossRefPubMedGoogle Scholar
  34. 34.
    Shah, M. J., Rychik, J., Fogel, M. A., Murphy, J. D., & Jacobs, M. L. (1997). Pulmonary AV malformations after superior cavopulmonary connection: resolution after inclusion of hepatic veins in the pulmonary circulation. The Annals of Thoracic Surgery, 63, 960–963.CrossRefPubMedGoogle Scholar
  35. 35.
    de Zélicourt, D. A., Haggerty, C. M., Sundareswaran, K. S., Whited, B. S., Rossignac, J. R., Kanter, K. R., et al. (2011). Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. The Journal of Thoracic and Cardiovascular Surgery, 141, 1170–1177.  https://doi.org/10.1016/j.jtcvs.2010.11.032.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kawashima, Y., Kitamura, S., Matsuda, H., Shimazaki, Y., Nakano, S., & Hirose, H. (1984). Total cavopulmonary shunt operation in complex cardiac anomalies. A new operation. The Journal of Thoracic and Cardiovascular Surgery, 87, 74–81.PubMedGoogle Scholar
  37. 37.
    Helps, E. P. W., & McDonald, D. A. (1954). Observations on laminar flow in veins. The Journal of Physiology, 124, 631–639.  https://doi.org/10.1113/jphysiol.1954.sp005135.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shadden, S. C., & Hendabadi, S. (2013). Potential fluid mechanic pathways of platelet activation. Biomechanics and Modeling in Mechanobiology, 12, 467–474.  https://doi.org/10.1007/s10237-012-0417-4.CrossRefPubMedGoogle Scholar
  39. 39.
    Biglino G, Capelli C, Bruse J, Bosi GM, Taylor AM, Schievano S. (2016). Computational modelling for congenital heart disease: how far are we from clinical translation? Heart,1–6. doi: https://doi.org/10.1136/heartjnl-2016-310423.
  40. 40.
    Lau, K. D., & Figueroa, C. A. (2015). Simulation of short-term pressure regulation during the tilt test in a coupled 3D-0D closed-loop model of the circulation. Biomechanics and Modeling in Mechanobiology, 14, 915–929.  https://doi.org/10.1007/s10237-014-0645-x.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Arthurs, C. J., Lau, K. D., Asrress, K. N., Redwood, S. R., & Figueroa, C. A. (2016). A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise. Am J Physiol - Hear Circ Physiol, 310, H1242–H1258.  https://doi.org/10.1152/ajpheart.00517.2015.CrossRefGoogle Scholar
  42. 42.
    Figueroa, C. A., Baek, S., Taylor, C. A., & Humphrey, J. D. (2009). A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering, 198, 3583–3602.  https://doi.org/10.1016/j.cma.2008.09.013.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of MichiganAnn ArborUSA
  2. 2.University of Michigan C.S. Mott Children’s Hospital Congenital Heart CenterAnn ArborUSA
  3. 3.Policlinico San Donato IRCCS, Thoracic Aortic Research CenterSan Donato MilaneseItaly
  4. 4.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations