Development and Characterization of a Porcine Mitral Valve Scaffold for Tissue Engineering

  • M. Granados
  • L. Morticelli
  • S. Andriopoulou
  • P. Kalozoumis
  • M. Pflaum
  • P. Iablonskii
  • B. Glasmacher
  • M. Harder
  • J. Hegermann
  • C. Wrede
  • I. Tudorache
  • S. Cebotari
  • A. Hilfiker
  • A. Haverich
  • Sotirios Korossis
Original Article

Abstract

Decellularized scaffolds represent a promising alternative for mitral valve (MV) replacement. This work developed and characterized a protocol for the decellularization of whole MVs. Porcine MVs were decellularized with 0.5% (w/v) SDS and 0.5% (w/v) SD and sterilized with 0.1% (v/v) PAA. Decellularized samples were seeded with human foreskin fibroblasts and human adipose-derived stem cells to investigate cellular repopulation and infiltration, and with human colony-forming endothelial cells to investigate collagen IV formation. Histology revealed an acellular scaffold with a generally conserved histoarchitecture, but collagen IV loss. Following decellularization, no significant changes were observed in the hydroxyproline content, but there was a significant reduction in the glycosaminoglycan content. SEM/TEM analysis confirmed cellular removal and loss of some extracellular matrix components. Collagen and elastin were generally preserved. The endothelial cells produced newly formed collagen IV on the non-cytotoxic scaffold. The protocol produced acellular scaffolds with generally preserved histoarchitecture, biochemistry, and biomechanics.

Keywords

Mitral valve Heart valve replacement Decellularization Biomechanics Histology Immunohistochemistry Biochemistry α-Gal Xenoepitope Collagen IV Biocompatibility Tissue engineering Scaffold Transmission electron microscopy Scanning electron microscopy Cytotoxicity Scaffold seeding Human foreskin fibroblasts Human adipose-derived stem cells Human colony-forming endothelial cells 

References

  1. 1.
    Korossis, S. A., Fisher, J., & Ingham, E. (2000). Cardiac valve replacement: a bioengineering approach. Bio-medical Materials and Engineering, 10(2), 83–124.PubMedGoogle Scholar
  2. 2.
    Boethig, D., Goerler, H., Westhoff-Bleck, M., Ono, M., Daiber, A., Haverich, A., & Berymann, T. (2007). Evaluation of 188 consecutive homografts implanted in pulmonary position after 20 years. Eur J Cardio-thoracic Surg., 32(1), 133–142.CrossRefGoogle Scholar
  3. 3.
    Da Costa, F. D., Dohmen, P. M., Duarte, D., von Glenn, C., Lopes, S. V., Filho, H. H., da Costa, M. B., & Konertz, W. (2005). Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. Eur J Cardio-thoracic Surg., 27(4), 572–578.CrossRefGoogle Scholar
  4. 4.
    Kalangos, A., Cikirikcioglu, M., Cherian, S., Stimec, B., Jashari, R., & Fasel, J. (2011). Mitral valve replacement using a mitral homograft. Multimed Man Cardiothorac Surg MMCTS / Eur Assoc Cardio-Thoracic Surg, 916.Google Scholar
  5. 5.
    Olivito, S., Lalande, S., Nappi, F., Hammoudi, N., D’Alessandro, C., Fouret, P., & Acar, C. (2012). Structural deterioration of the cryopreserved mitral homograft valve. The Journal of Thoracic and Cardiovascular Surgery, 144(2), 313–320.CrossRefPubMedGoogle Scholar
  6. 6.
    Kumar, A. S., Choudhary, S. K., Mathur, A., Saxena, A., Roy, R., & Chopra, P. (2000). Homograft mitral valve replacement: five years’ results. The Journal of Thoracic and Cardiovascular Surgery, 120(3), 450–458.CrossRefPubMedGoogle Scholar
  7. 7.
    Gulbins, H., Anderson, I., Kilian, E., Schrepfer, S., Uhlig, A., Kreuzer, E., & Reichart, B. (2002). Five years of experience with mitral valve homografts. The Thoracic and Cardiovascular Surgeon, 50(4), 223–229.CrossRefPubMedGoogle Scholar
  8. 8.
    Wu, S., Duan, B., Qin, X., & Butcher, J. (2017). Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering. Acta Biomaterialia. doi:10.1016/j.actbio.2017.01.051.Google Scholar
  9. 9.
    Kennamer, A., Sierad, L., Pascal, R., Rierson, N., Albers, C., Harpa, M., Cotoi, O., Harceaga, L., Olah, O., Terezia, P., Simionescu, A., & Simionescu, D. (2016). Bioreactor conditioning of valve scaffolds seeded internally with adult stem cells. Tissue Eng Regen Med., 13(5), 507–515.CrossRefGoogle Scholar
  10. 10.
    Deborde, C., Simionescu, D. T., Wright, C., Liao, J., Sierad, L. N., & Simionescu, A. (2016). Stabilized collagen and elastin-based scaffolds for mitral valve tissue engineering. Tissue Engineering. Part A, 22(21–22), 1241–1251.CrossRefPubMedGoogle Scholar
  11. 11.
    Hoerstrup, S. P., Sodian, R., Sperling, J. S., Vacanti, J. P., & Mayer Jr., J. E. (2004). New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Engineering., 6(1), 75–79.CrossRefGoogle Scholar
  12. 12.
    Baraki, H., Tudorache, I., Braun, M., Höffler, K., Görler, A., Lichtenberg, A., Bara, C., Calistru, A., Brandes, G., Hewicker-Trautwein, M., Hilfiker, A., Haverich, A., & Cebotari, S. (2009). Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials, 30(31), 6240–6246.CrossRefPubMedGoogle Scholar
  13. 13.
    Tudorache, I., Calistru, A., Baraki, H., Meyer, T., Höffler, K., Sarikouch, S., Bara, C., Görler, A., Hartung, D., Hilfiker, A., Haverich, A., & Cebotari, S. (2013). Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Engineering. Part A, 19(15–16), 1686–1694.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cebotari, S., Lichtenberg, A., Tudorache, I., Hilfiker, A., Mertsching, H., Leyh, R., Breymann, T., Kallenbach, K., Maniuc, L., Batrinac, A., Repin, O., Maliga, O., Ciubotaru, A., & Haverich, A. (2006). Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114(1 Suppl), I132–I137.PubMedGoogle Scholar
  15. 15.
    Cebotari, S., Tudorache, I., Ciubotaru, A., Boethig, D., Sarikouch, S., Goerler, A., Lichtenberg, A., Cheptanaru, E., Barnaciuc, S., Cazacu, A., Maliga, O., Repin, O., Maniuc, L., Breymann, T., & Haverich, A. (2011). Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation, 124(11 Suppl), S115–S123.CrossRefPubMedGoogle Scholar
  16. 16.
    da Costa, F. D., Takkenberg, J. J., Fornazari, D., Balbi Filho, E. M., Colatusso, C., Mokhles, M. M., da Costa, A. B., Sagrado, A. G., Ferreira, A. D., Fernandes, T., & Lopes, S. V. (2014). Long-term results of the Ross operation: an 18-year single institutional experience. European Journal of Cardio-Thoracic Surgery, 46, 415–422.CrossRefPubMedGoogle Scholar
  17. 17.
    Zehr, K. J., Yagubyan, M., Connolly, H. M., Nelson, S. M., & Schaff, H. V. (2005). Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. The Journal of Thoracic and Cardiovascular Surgery, 130(4), 1010–1015.CrossRefPubMedGoogle Scholar
  18. 18.
    da Costa, F. D., Costa, A. C., Prestes, R., Domanski, A. C., Balbi, E. M., Ferreira, A. D., & Lopes, S. V. (2010). The early and midterm function of decellularized aortic valve allografts. The Annals of Thoracic Surgery, 90(6), 1854–1860.CrossRefPubMedGoogle Scholar
  19. 19.
    Neumann, A., Cebotari, S., Tudorache, I., Haverich, A., & Sarikouch, S. (2013). Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed Tech (Berl)., 58(5), 453–456.CrossRefPubMedGoogle Scholar
  20. 20.
    Sarikouch, S., Horke, A., Tudorache, I., Beerbaum, P., Westhoff-Bleck, M., Boethig, D., Repin, O., Maniuc, L., Ciubotaru, A., Haverich, A., & Cebotari, S. (2016). Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. European Journal of Cardio-Thoracic Surgery, 50(2), 281–290.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Iablonskii, P., Cebotari, S., Tudorache, I., Granados, M., Morticelli, L., Goecke, T., Klein, N., Korossis, S., Hilfiker, A., & Haverich, A. (2015). Tissue-engineered mitral valve: morphology and biomechanics. Interactive Cardiovascular and Thoracic Surgery, 20(6), 712–719 discussion 719.CrossRefPubMedGoogle Scholar
  22. 22.
    Galili, U. (2005). The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunology and Cell Biology, 83(6), 674–686.CrossRefPubMedGoogle Scholar
  23. 23.
    Edwards, C. A., & O’Brien Jr., W. D. (1980). Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clinica Chimica Acta, 104(2), 161–167.CrossRefGoogle Scholar
  24. 24.
    Bank, R. A., Krikken, M., Beekman, B., Stoop, R., Maroudas, A., Lafeber, F. P., & te Koppele, J. M. (1997). A simplified measurement of degraded collagen in tissues: application in healthy, fibrillated and osteoarthritic cartilage. Matrix Biol, 233–243.Google Scholar
  25. 25.
    Farndale, R. W., Buttle, D. J., & Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta, 883(2), 173–177.CrossRefPubMedGoogle Scholar
  26. 26.
    Korossis, S. A., Booth, C., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Fisher, J., & Ingham, I. (2002). Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. The Journal of Heart Valve Disease, 11(4), 463–471.PubMedGoogle Scholar
  27. 27.
    Lam, J. H. C., Ranganathan, N., Wigle, E. D., & Silver, M. D. (1970). Morphology of the human mitral valve: I. Chordae tendineae: a new classification. Circulation, 41(3), 449–458.CrossRefPubMedGoogle Scholar
  28. 28.
    Rudat, C., Grieskamp, T., Rӧhr, C., Airik, R., Wrede, C., Hegermann, J., Herrmann, B. G., Schuster-Gossler, K., & Kispert, A. (2014). Upk3b is dispensable for development and integrity of urothelium and mesothelium. PloS One, 9(11), e112112.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gruene, M., Pflaum, M., Deiwick, A., Koch, L., Schlie, S., Unger, C., Wilhelmi, M., Haverich, A., & Chichkov, B. N. (2011). Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication, 3(1), 015005.CrossRefPubMedGoogle Scholar
  30. 30.
    Pflaum, M., Kühn-Kauffeldt, M., Schmeckebier, S., Dipresa, D., Chauhan, K., Wiegmann, B., Haug, R. J., Schein, J., Haverich, A., & Korossis, S. (2017). Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung. Acta Biomaterialia, 50, 510–521.CrossRefPubMedGoogle Scholar
  31. 31.
    Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–3243.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Luo, J., Korossis, S. A., Wilshaw, S., Jennings, L. M., Fisher, J., & Ingham, E. (2014). Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering. Tissue Engineering. Part A, 20(21–22), 2963–2974 27.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lichtenberg, A., Cebotari, S., Tudorache, I., Sturz, G., Winterhalter, M., Hilfiker, A., & Haverich, A. (2006). Flow-dependent re-endothelialization of tissue- engineered heart valves. The Journal of Heart Valve Disease, 15(2), 287–293 discussion 293-4.PubMedGoogle Scholar
  34. 34.
    Tudorache, I., Cebotari, S., Sturz, G., Kirsch, L., Hurschler, C., Hilfiker, A., & Lichtenberg, A. (2007). Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. The Journal of Heart Valve Disease, 16(5), 567–573 discussion 574.PubMedGoogle Scholar
  35. 35.
    Cebotari, S., Mertsching, H., Kallenbach, K., Kostin, S., Repin, O., Batrinac, A., Kleczka, C., Ciubotaru, A., & Haverich, A. (2002). Construction of autologous human heart valves based on an acellular allograft matrix. Circulation, 106(12 Suppl 1), I63–I68.PubMedGoogle Scholar
  36. 36.
    Simon, P. (2003). Early failure of the tissue engineered porcine heart valve SYNERGRAFT™ in pediatric patients. Eur J Cardio-Thoracic Surg., 23(6), 1002–1006.CrossRefGoogle Scholar
  37. 37.
    Galili, U. (2015). Avoiding detrimental human immune response against mammalian extracellular matrix implants. Tissue Engineering. Part B, Reviews, 21(2), 231–241.CrossRefPubMedGoogle Scholar
  38. 38.
    Ghaderi, D., Taylor, R. E., Padler-Karavani, V., Diaz, S., & Varki, A. (2010). Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nature Biotechnology., 28(8), 863–867.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Samraj, A. N., Pearce, O. M., Läubli, H., Crittenden, A. N., Bergfeld, A. K., Banda, K., Gregg, C. J., Bingman, A. E., Secrest, P., Diaz, S. L., Varki, N. M., & Varki, A. (2015). A red meat-derived glycan promotes inflammation and cancer progression. Proceedings of the National Academy of Sciences, 112(2), 542–547.CrossRefGoogle Scholar
  40. 40.
    Galili, U., Tibell, A., Samuelsson, B., Rydberg, L., & Groth, C. G. (1995). Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation, 59, 1549–1956.CrossRefPubMedGoogle Scholar
  41. 41.
    Galili, U., LaTemple, D. C., Walgenbach, A. W., & Stone, K. R. (1997). Porcine and bovine cartilage transplants in cynomolgus monkey. II. Changes in anti-Gal response during chronic rejection. Transplantation, 63, 646–651.CrossRefPubMedGoogle Scholar
  42. 42.
    Galili, U., LaTemple, D. C., & Radic, M. Z. (1998). A sensitive assay for measuring alpha-Gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation, 65(8), 1129–1132.CrossRefPubMedGoogle Scholar
  43. 43.
    Keane, T. J., Londono, R., Turner, N. J., & Badylak, S. F. (2012). Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials, 33(6), 1771–1781.CrossRefPubMedGoogle Scholar
  44. 44.
    Gilbert, T. W., Freund, J. M., & Badylak, S. F. (2009). Quantification of DNA in biologic scaffold materials. The Journal of Surgical Research, 152(1), 135–139.CrossRefPubMedGoogle Scholar
  45. 45.
    Wilshaw, S., Rooney, P., Berry, H., Kearney, J., Homer-Vanniasinkam, S., Fisher, J., & Ingham, E. (2012). Development and characterisation of acellular allogeneic arterial matrices. Tissue Engineering. Part A, 18(5–6), 471.CrossRefPubMedGoogle Scholar
  46. 46.
    Bennett, R. M., Gabor, G. T., & Merritt, M. M. (1985). DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. The Journal of Clinical Investigation, 76(6), 2182–2190.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    McCoy, S. L., Kurtz, S. E., Hausman, F. A., Trune, D. R., Bennett, R. M., & Hefeneider, S. H. (2004). Activation of RAW264.7 macrophages by bacterial DNA and lipopolysaccharide increases cell surface DNA binding and internalization. The Journal of Biological Chemistry, 279(17), 17217–17223.CrossRefPubMedGoogle Scholar
  48. 48.
    Gilbert, T. W., Stewart-Akers, A. M., Simmons-Byrd, A., & Badylak, S. F. (2007). Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. The Journal of Bone and Joint Surgery. American Volume, 89(3), 621.PubMedGoogle Scholar
  49. 49.
    Lis, Y., Burleigh, M. C., Parker, D. J., Child, A. H., Hogg, J., & Davies, M. J. (1987). Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. The Biochemical Journal, 244(3), 597–603.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rothenburger, M., Völker, W., Vischer, P., Glasmacher, B., Scheld, H. H., & Deiwick, M. (2002). Ultrastructure of proteoglycans in tissue-engineered cardiovascular structures. Tissue Engineering, 8(6), 1049–1056.CrossRefPubMedGoogle Scholar
  51. 51.
    Yoon, J. H., & Halper, J. (2005). Tendon proteoglycans: biochemistry and function. Journal of Musculoskeletal & Neuronal Interactions, 5(1), 22–34.Google Scholar
  52. 52.
    Sacks, M.S., Wognum, S., Stella, J., Joyce, E., D’Amore, A. (2011). Heart valve tissues. In: Ducheyne P, Healy K, Hutmacher DE, Grainger DW, Kirkpatrick CJ, editors. Comprehensive Biomaterials. Elsevier.Google Scholar
  53. 53.
    Grande-Allen, K. J., Clabro, A., Gupta, V., Wight, T. N., Hascall, V. C., & Vesely, I. (2004). Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology, 14(7), 621–633.CrossRefPubMedGoogle Scholar
  54. 54.
    Williams, C., Liao, J., Joyce, E. M., Wang, B., Leach, J. B., Sacks, M. S., & Wong, J. Y. (2009). Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomaterialia, 5(4), 993–1005.CrossRefPubMedGoogle Scholar
  55. 55.
    Herbert, A., Jones, G. L., Ingham, E., & Fisher, J. (2015). A biomechanical characterisation of acellular porcine super flexor tendons for use in anterior cruciate ligament replacement: investigation into the effects of fat reduction and bioburden reduction bioprocesses. Journal of Biomechanics, 48(1), 22–29.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liao, J., Joyce, E. M., & Sacks, M. S. (2008). Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials, 29(8), 1065–1074.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Korossis, S. A., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Ingham, E., & Fisher, J. (2005). In-vitro assessment of the functional performance of the decellularized intact porcine aortic root. The Journal of Heart Valve Disease, 14(3), 408–421.PubMedGoogle Scholar
  58. 58.
    Kunzelman, K. S., Cochran, R. P., Murphree, S. S., Ring, W. S., Verrier, E. D., & Eberhart, R. C. (1993). Differential collagen distribution in the mitral valve and its influence on miomechanical behaviour. The Journal of Heart Valve Disease, 2(2), 236–244.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Granados
    • 1
  • L. Morticelli
    • 1
  • S. Andriopoulou
    • 1
  • P. Kalozoumis
    • 1
  • M. Pflaum
    • 1
  • P. Iablonskii
    • 2
  • B. Glasmacher
    • 3
  • M. Harder
    • 4
  • J. Hegermann
    • 5
  • C. Wrede
    • 5
  • I. Tudorache
    • 2
  • S. Cebotari
    • 2
  • A. Hilfiker
    • 2
    • 6
  • A. Haverich
    • 1
    • 2
  • Sotirios Korossis
    • 1
    • 2
  1. 1.Lower Saxony Centre for Biomedical Engineering, Implant Research and DevelopmentHannover Medical SchoolHannoverGermany
  2. 2.Department of Cardiothoracic, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
  3. 3.Institute for Multiphase ProcessesLeibniz University HannoverHannoverGermany
  4. 4.Corlife oHGHannoverGermany
  5. 5.Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany
  6. 6.Leibniz Research Laboratories for Biotechnology and Artificial OrgansHannoverGermany

Personalised recommendations