Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts

  • Abhay B. Ramachandra
  • Andrew M. Kahn
  • Alison L. MarsdenEmail author
Original Article


Mechanical stimuli are key to understanding disease progression and clinically observed differences in failure rates between arterial and venous grafts following coronary artery bypass graft surgery. We quantify biologically relevant mechanical stimuli, not available from standard imaging, in patient-specific simulations incorporating non-invasive clinical data. We couple CFD with closed-loop circulatory physiology models to quantify biologically relevant indices, including wall shear, oscillatory shear, and wall strain. We account for vessel-specific material properties in simulating vessel wall deformation. Wall shear was significantly lower (p = 0.014*) and atheroprone area significantly higher (p = 0.040*) in venous compared to arterial grafts. Wall strain in venous grafts was significantly lower (p = 0.003*) than in arterial grafts while no significant difference was observed in oscillatory shear index. Simulations demonstrate significant differences in mechanical stimuli acting on venous vs. arterial grafts, in line with clinically observed graft failure rates, offering a promising avenue for stratifying patients at risk for graft failure.


Coronary bypass Vein graft Computational fluid dynamics Wall shear Mammary artery Multiscale model Risk stratification Hemodynamics Patient-specific modeling 



Coronary artery bypass graft


Coronary artery disease


Computational fluid dynamics


Computed tomography


Green Strain Invariant1


Internal mammary artery


Lumped parameter network


Oscillatory shear index


Saphenous vein graft


Wall shear stress



The authors wish to thank Weiguang Yang, PhD, for his help with variable wall property code, Christopher Chu for his help with patient model construction from CT scans, and Wendy Davila for her help with data collection.

Compliance with Ethical Standards


This work was supported by NIH grant (NIH R01-RHL123689A), NSF CAREER Award OCI-1150184 to A. L. M., and a Burroughs Wellcome Fund Career Award at the Scientific Interface to A. L. M. Computational resources were provided by a grant to A. L. M (TG-CTS130034) through the Extreme Science and Engineering Discovery Environment (XSEDE).

Conflict of Interest

Author A. B. R. declares that he has no conflict of interest. Author A. K. declares that he has no conflict of interest. Author A.L.M. declares that she has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Patient recruitment and access to non-invasive clinical data (computer tomographic (CT) images, echocardiography data) was carried out according to protocols approved by the University of California and Stanford University institutional review boards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Braunwald, E., Antman, E. M., Beasley, J. W., Califf, R. M., Cheitlin, M. D., Hochman, J. S., et al. (2002). ACC/AHA Guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction—2002: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Unstable Angina). Circulation, 106(14), 1893–1900.CrossRefPubMedGoogle Scholar
  2. 2.
    Motwani, J. G., & Topol, E. J. (1998). Aortocoronary saphenous vein graft disease pathogenesis, predisposition, and prevention. Circulation, 97(9), 916–931.CrossRefPubMedGoogle Scholar
  3. 3.
    Goldman, S., Zadina, K., Moritz, T., Ovitt, T., Sethi, G., Copeland, J. G., et al. (2004). Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. Journal of the American College of Cardiology, 44(11), 2149–2156.CrossRefPubMedGoogle Scholar
  4. 4.
    Halabi, A. R., Alexander, J. H., Shaw, L. K., Lorenz, T. J., Liao, L., Kong, D. F., et al. (2005). Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. The American Journal of Cardiology, 96(9), 1254–1259.CrossRefPubMedGoogle Scholar
  5. 5.
    Lopes, R. D., Mehta, R. H., Hafley, G. E., Williams, J. B., Mack, M. J., Peterson, E. D., et al. (2012). Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation, 125(6), 749–756.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weintraub, W. S., Jones, E. L., Morris, D. C., King, S. B., Guyton, R. A., & Craver, J. M. (1997). Outcome of reoperative coronary bypass surgery versus coronary angioplasty after previous bypass surgery. Circulation, 95(4), 868–877.CrossRefPubMedGoogle Scholar
  7. 7.
    Dobrin, P. B. (1995). Mechanical factors associated with the development of intimal and medial thickening in vein grafts subjected to arterial pressure. A model of arteries exposed to hypertension. Hypertension, 26(1), 38–43.CrossRefPubMedGoogle Scholar
  8. 8.
    Glagov, S., Zarins, C., Giddens, D., & Ku, D. N. (1988). Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Archives of Pathology & Laboratory Medicine, 112(10), 1018–1031.Google Scholar
  9. 9.
    Figueroa, C. A., Baek, S., Taylor, C. A., & Humphrey, J. D. (2009). A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering, 198(45), 3583–3602.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Valentín, A., Cardamone, L., Baek, S., & Humphrey, J. (2009). Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. Journal of the Royal Society Interface, 6(32), 293–306.CrossRefGoogle Scholar
  11. 11.
    Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., et al. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28(1), 1–39. e14.CrossRefPubMedGoogle Scholar
  12. 12.
    Quiñones, M. A., Otto, C. M., Stoddard, M., Waggoner, A., & Zoghbi, W. A. (2002). Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. Journal of the American Society of Echocardiography, 15(2), 167–184.CrossRefPubMedGoogle Scholar
  13. 13.
    Stelfox, H. T., Ahmed, S. B., Ribeiro, R. A., Gettings, E. M., Pomerantsev, E., & Schmidt, U. (2006). Hemodynamic monitoring in obese patients: the impact of body mass index on cardiac output and stroke volume*. Critical Care Medicine, 34(4), 1243–1246.CrossRefPubMedGoogle Scholar
  14. 14.
    Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. Journal of the American College of Cardiology, 61(22), 2233–2241.CrossRefPubMedGoogle Scholar
  15. 15.
    Sahni, O., Müller, J., Jansen, K. E., Shephard, M. S., & Taylor, C. A. (2006). Efficient anisotropic adaptive discretization of the cardiovascular system. Computer Methods in Applied Mechanics and Engineering, 195(41), 5634–5655.CrossRefGoogle Scholar
  16. 16.
    Coogan, J. S., Humphrey, J. D., & Figueroa, C. A. (2013). Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomechanics and modeling in mechanobiology, 1-15Google Scholar
  17. 17.
    Roccabianca, S., Figueroa, C., Tellides, G., & Humphrey, J. (2014). Quantification of regional differences in aortic stiffness in the aging human. Journal of the Mechanical Behavior of Biomedical Materials, 29, 618–634.CrossRefPubMedGoogle Scholar
  18. 18.
    Han, D.-W., Park, Y. H., Kim, J. K., Jung, T. G., Lee, K.-Y., Hyon, S.-H., et al. (2005). Long-term preservation of human saphenous vein by green tea polyphenol under physiological conditions. Tissue Engineering, 11(7-8), 1054–1064.CrossRefPubMedGoogle Scholar
  19. 19.
    Podesser, B., Neumann, F., Neumann, M., Schreiner, W., Wollenek, G., & Mallinger, R. (1998). Outer radius-wall thickness ratio, a postmortem quantitative histology in human coronary arteries. Cells, Tissues, Organs, 163(2), 63–68.CrossRefGoogle Scholar
  20. 20.
    Monos, E., & Csengödy, J. (1980). Does hemodynamic adaptation take place in the vein grafted into an artery? Pfluegers Archiv, 384(2), 177–182.CrossRefPubMedGoogle Scholar
  21. 21.
    Bazilevs, Y., Hsu, M.-C., Benson, D., Sankaran, S., & Marsden, A. (2009). Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics, 45(1), 77–89.CrossRefGoogle Scholar
  22. 22.
    Moghadam, M. E., Vignon-Clementel, I. E., Figliola, R., Marsden, A. L., M. O. C. H. A. Investigators, et al. (2013). A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. Journal of Computational Physics, 244, 63–79.CrossRefGoogle Scholar
  23. 23.
    Kim, H. J., Vignon-Clementel, I. E., Coogan, J. S., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering, 38(10), 3195–3209.CrossRefPubMedGoogle Scholar
  24. 24.
    Sankaran, S., Moghadam, M. E., Kahn, A. M., Tseng, E. E., Guccione, J. M., & Marsden, A. L. (2012). Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Annals of Biomedical Engineering, 40(10), 2228–2242.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Corsini, C., Baker, C., Kung, E., Schievano, S., Arbia, G., Baretta, A., et al. (2014). An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Computer Methods in Biomechanics and Biomedical Engineering, 17(14), 1572–1589.CrossRefPubMedGoogle Scholar
  26. 26.
    Bogren, H. G., Klipstein, R. H., Firmin, D. N., Mohiaddin, R. H., Underwood, S. R., Rees, R. S. O., et al. (1989). Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. American Heart Journal, 117(6), 1214–1222.CrossRefPubMedGoogle Scholar
  27. 27.
    Changizi, M. A., & Cherniak, C. (2000). Modeling the large-scale geometry of human coronary arteries. Canadian Journal of Physiology and Pharmacology, 78(8), 603–611.CrossRefPubMedGoogle Scholar
  28. 28.
    Zamir, M., Sinclair, P., & Wonnacott, T. H. (1992). Relation between diameter and flow in major branches of the arch of the aorta. Journal of Biomechanics, 25(11), 1303–1310.CrossRefPubMedGoogle Scholar
  29. 29.
    Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J., & Taylor, C. A. (2006). A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering, 195(41), 5685–5706.CrossRefGoogle Scholar
  30. 30.
    Esmaily-Moghadam, M., Bazilevs, Y., & Marsden, A. L. (2013). A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Computational Mechanics, 52(5), 1141–1152.CrossRefGoogle Scholar
  31. 31.
    Kung, E. O., Les, A. S., Figueroa, C. A., Medina, F., Arcaute, K., Wicker, R. B., et al. (2011). In vitro validation of finite element analysis of blood flow in deformable models. Annals of Biomedical Engineering, 39(7), 1947–1960.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jones, E., Oliphant, T., & Peterson, P. (2014). {SciPy}: open source scientific tools for {Python}.Google Scholar
  33. 33.
    Sipahi, I., Akay, M. H., Dagdelen, S., Blitz, A., & Alhan, C. (2014). Coronary artery bypass grafting vs percutaneous coronary intervention and long-term mortality and morbidity in multivessel disease: meta-analysis of randomized clinical trials of the arterial grafting and stenting era. JAMA internal medicine, 174(2), 223–230.CrossRefPubMedGoogle Scholar
  34. 34.
    Weintraub, W. S., Grau-Sepulveda, M. V., Weiss, J. M., O'Brien, S. M., Peterson, E. D., Kolm, P., et al. (2012). Comparative effectiveness of revascularization strategies. New England Journal of Medicine, 366(16), 1467–1476.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xiao, N., Humphrey, J. D., & Figueroa, C. A. (2013). Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. Journal of Computational Physics, 244, 22–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Shimizu, T., Ito, S., Kikuchi, Y., Misaka, M., Hirayama, T., Ishimaru, S., et al. (2004). Arterial conduit shear stress following bypass grafting for intermediate coronary artery stenosis: a comparative study with saphenous vein grafts. European Journal of Cardio-Thoracic Surgery, 25(4), 578–584.CrossRefPubMedGoogle Scholar
  37. 37.
    Cox, J. L., Chiasson, D. A., & Gotlieb, A. I. (1991). Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Progress in Cardiovascular Diseases, 34(1), 45–68.CrossRefPubMedGoogle Scholar
  38. 38.
    Dobrin, P., Littooy, F., & Endean, E. (1989). Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery, 105(3), 393–400.PubMedGoogle Scholar
  39. 39.
    Haga, J. H., Li, Y.-S. J., & Chien, S. (2007). Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. Journal of Biomechanics, 40(5), 947–960.CrossRefPubMedGoogle Scholar
  40. 40.
    Ramachandra, A. B., Sankaran, S., Humphrey, J. D., & Marsden, A. L. (2015). Computational simulation of the adaptive capacity of vein grafts in response to increased pressure. Journal of Biomechanical Engineering, 137(3), 031009.CrossRefGoogle Scholar
  41. 41.
    Zeng, D., Ding, Z., Friedman, M. H., & Ethier, C. R. (2003). Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering, 31(4), 420–429.CrossRefPubMedGoogle Scholar
  42. 42.
    Tran, J., Schiavazzi, D., Ramachandra, A., Kahn, A., & Marsden, A. (2016). Automated tuning for parameter identification in multiscale coronary simulations. Computers and Fluids. doi: 10.1016/j.compfluid.2016.05.015
  43. 43.
    Merkow, J., Tu, Z., Kriegman, D., & Marsden, A. (2015). Structural edge detection for cardiovascular modeling. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015 (pp. 735-742): Springer.Google Scholar
  44. 44.
    Douglas, P. S., Pontone, G., Hlatky, M. A., Patel, M. R., Norgaard, B. L., Byrne, R. A., et al. (2015). Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. European heart journal, ehv444.Google Scholar
  45. 45.
    Yang, W., Chan, F. P., Reddy, V. M., Marsden, A. L., & Feinstein, J. A. (2015). Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. The Journal of Thoracic and Cardiovascular Surgery, 149(1), 247–255.CrossRefPubMedGoogle Scholar
  46. 46.
    Esmaily-Moghadam, M., Hsia, T.-Y., Marsden, A. L., & Investigators, M. o. C. H. A. (2015). The assisted bidirectional Glenn: a novel surgical approach for first-stage single-ventricle heart palliation. The Journal of Thoracic and Cardiovascular Surgery, 149(3), 699–705.CrossRefPubMedGoogle Scholar
  47. 47.
    LaDisa, J. F., Olson, L. E., Guler, I., Hettrick, D. A., Audi, S. H., Kersten, J. R., et al. (2004). Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. Journal of Applied Physiology, 97(1), 424–430.CrossRefPubMedGoogle Scholar
  48. 48.
    Di Achille, P., & Humphrey, J. D. (2012). Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. The Yale Journal of Biology and Medicine, 85(2), 217.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Abhay B. Ramachandra
    • 1
    • 2
  • Andrew M. Kahn
    • 3
  • Alison L. Marsden
    • 4
    Email author
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa Jolla, CA 92093USA
  2. 2.Departments of Pediatrics and Bioengineering, Institute for Computational and Mathematical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of MedicineUniversity of California San DiegoLa Jolla, CA 92093USA
  4. 4.Departments of Pediatrics and Bioengineering, Institute for Computational and Mathematical EngineeringStanford UniversityStanford,USA

Personalised recommendations