Advertisement

Journal of Cardiovascular Translational Research

, Volume 8, Issue 8, pp 449–457 | Cite as

A Guide for a Cardiovascular Genomics Biorepository: the CATHGEN Experience

  • William E. KrausEmail author
  • Christopher B. Granger
  • Michael H. SketchJr.
  • Mark P. Donahue
  • Geoffrey S. Ginsburg
  • Elizabeth R. Hauser
  • Carol Haynes
  • L. Kristin Newby
  • Melissa Hurdle
  • Z. Elaine Dowdy
  • Svati H. Shah
Article

Abstract

The CATHeterization GENetics (CATHGEN) biorepository was assembled in four phases. First, project start-up began in 2000. Second, between 2001 and 2010, we collected clinical data and biological samples from 9334 individuals undergoing cardiac catheterization. Samples were matched at the individual level to clinical data collected at the time of catheterization and stored in the Duke Databank for Cardiovascular Diseases (DDCD). Clinical data included the following: subject demographics (birth date, race, gender, etc.); cardiometabolic history including symptoms; coronary anatomy and cardiac function at catheterization; and fasting chemistry data. Third, as part of the DDCD regular follow-up protocol, yearly evaluations included interim information: vital status (verified via National Death Index search and supplemented by Social Security Death Index search), myocardial infarction (MI), stroke, rehospitalization, coronary revascularization procedures, medication use, and lifestyle habits including smoking. Fourth, samples were used to generate molecular data. CATHGEN offers the opportunity to discover biomarkers and explore mechanisms of cardiovascular disease.

Keywords

Cardiovascular disease Genetics Genomics Metabolomics Air pollution Geocoding Biorepository Biomarkers Cardiometabolic disease 

Abbreviations

CATHGEN

CATHeterization GENetics; sample and clinical data repository

dbGaP

NCBI’s database of genotypes and phenotypes

DDCD

Duke Databank for Cardiovascular Diseases; clinical database

DISCERN

Duke search engine for clinical data from patient records

DNA

Deoxyribonucleic acid

EDTA

Ethylenediaminetetraacetic acid; anticoagulant

GWAS

Genome-wide association study

IRB

Institutional Review Board

LD

Linkage disequilibrium

LDL-C

Low-density lipoprotein-cholesterol

MAF

Minor allele frequency

MS

Mass spectrometry

MURDOCK Study

Contiguous sample of 2024 CATHGEN participants

NCBI

National Center for Biotechnology Information

NEFA

Non-esterified fatty acids

PEDIGENE®

Data repository for clinical and sample data

QTL

Quantitative trait locus

RNA

Ribonucleic acid

Notes

Acknowledgments

Collections and generation of molecular data were generated in part through research agreements with the following: BG Medicine, Inc.; CardioDx, Inc.; Qiagen, Inc.; and Liposcience, Inc. GWAs and whole genome gene expression data were generated through NIH-funded studies to WEK (HL101621) and SHS (HL095987). Metabolomic data were generated through grants to SHS (HL095987, AHA Fellow-to-Faculty). An internal grant award from the MURDOCK Study (David H. Murdock Institute for Business and Culture, 1UL1 RR024128 from the National Center for Research Resources NCRR) to LKN was also helpful and appreciated. We wish to thank Dr. Marie Lynn Miranda and the Duke School of the Environment for developing geocoding addresses for CATHGEN participants.

Compliance with Ethical Standards

Funding

Through Duke, collections and generation of molecular data were generated in part through research agreements with the following: BG Medicine, Inc.; CardioDx, Inc.; Qiagen, Inc.; Liposcience, Inc..; and US Environmental Protection Agency. GWAs and whole genome gene expression data were generated through NIH-funded studies to WEK (HL101621) and SHS (HL095987). Metabolomic data were generated through grants to SHS (HL095987, AHA Fellow-to-Faculty).

Conflict of Interest

GSG has a financial interest in CardioDx, Inc. No other authors have potential conflicts of interest.

Compliance with Ethical Standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

All CATHGEN subjects were consented for participation in the biorepository and cardiovascular related research. Subject consent, data collection, sample collection, and analyses were approved through the Duke Institutional Review Board.

References

  1. 1.
    Bhattacharya, S., Dunham, A. A., Cornish, M. A., Christian, V. A., Ginsburg, G. S., Tenenbaum, J. D., et al. (2012). The Measurement to Understand Reclassification of Disease of Cabarrus/Kannapolis (MURDOCK) Study community registry and biorepository. American Journal of Translational Research, 4(4), 458–470.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Halim, S. A., Neely, M. L., Pieper, K. S., Shah, S. H., Kraus, W. E., Hauser, E. R., et al. (2015). Simultaneous consideration of multiple candidate protein biomarkers for long-term risk for cardiovascular events. Circulation. Cardiovascular Genetics, 8(1), 168–177.CrossRefPubMedGoogle Scholar
  3. 3.
    Jeyarajah, E. J., Cromwell, W. C., & Otvos, J. D. (2006). Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clinics in Laboratory Medicine, 26(4), 847–870.CrossRefPubMedGoogle Scholar
  4. 4.
    Beineke, P., Fitch, K., Tao, H., Elashoff, M. R., Rosenberg, S., Kraus, W. E., et al. (2012). A whole blood gene expression-based signature for smoking status. BMC Medical Genomics, 5, 58.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bhattacharya, S., Granger, C. B., Craig, D., Haynes, C., Bain, J., Stevens, R. D., et al. (2014). Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis, 232(1), 191–196.CrossRefPubMedGoogle Scholar
  6. 6.
    Brunner, M. P., Shah, S. H., Craig, D. M., Stevens, R. D., Muehlbauer, M. J., Bain, J. R., et al. (2011). Effect of heparin administration on metabolomic profiles in samples obtained during cardiac catheterization. Circulation. Cardiovascular Genetics, 4(6), 695–700.CrossRefPubMedGoogle Scholar
  7. 7.
    Connelly, J. J., Cherepanova, O. A., Doss, J. F., Karaoli, T., Lillard, T. S., Markunas, C. A., et al. (2013). Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Human Molecular Genetics, 22(25), 5107–5120.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Connelly, J. J., Shah, S. H., Doss, J. F., Gadson, S., Nelson, S., Crosslin, D. R., et al. (2008). Genetic and functional association of FAM5C with myocardial infarction. BMC Medical Genetics, 9, 33.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Connelly, J. J., Wang, T., Cox, J. E., Haynes, C., Wang, L., Shah, S. H., et al. (2006). GATA2 is associated with familial early-onset coronary artery disease. PLoS Genetics, 2(8), e139.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Crosslin, D. R., Shah, S. H., Nelson, S. C., Haynes, C. S., Connelly, J. J., Gadson, S., et al. (2009). Genetic effects in the leukotriene biosynthesis pathway and association with atherosclerosis. Human Genetics, 125(2), 217–229.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Daniels, S. E., Beineke, P., Rhees, B., McPherson, J. A., Kraus, W. E., Thomas, G. S., et al. (2014). Biological and analytical stability of a peripheral blood gene expression score for obstructive coronary artery disease in the PREDICT and COMPASS studies. Journal of Cardiovascular Translational Research, 7(7), 615–622.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Davies, R. W., Wells, G. A., Stewart, A. F., Erdmann, J., Shah, S. H., Ferguson, J. F., et al. (2012). A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circulation. Cardiovascular Genetics, 5(2), 217–225.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Do, R., Stitziel, N. O., Won, H. H., Jorgensen, A. B., Duga, S., Angelica Merlini, P., et al. (2015). Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 518(7537), 102–106.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Dungan, J. R., Hauser, E. R., Qin, X., & Kraus, W. E. (2013). The genetic basis for survivorship in coronary artery disease. Frontiers in Genetics, 4, 191.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Elashoff, M. R., Wingrove, J. A., Beineke, P., Daniels, S. E., Tingley, W. G., Rosenberg, S., et al. (2011). Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients. BMC Medical Genomics, 4, 26.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Horne, B. D., Hauser, E. R., Wang, L., Muhlestein, J. B., Anderson, J. L., Carlquist, J. F., et al. (2009). Validation study of genetic associations with coronary artery disease on chromosome 3q13-21 and potential effect modification by smoking. Annals of Human Genetics, 73(Pt 6), 551–558.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kertai, M. D., Li, Y. W., Li, Y. J., Shah, S. H., Kraus, W. E., Fontes, M. L., et al. (2014). G protein-coupled receptor kinase 5 gene polymorphisms are associated with postoperative atrial fibrillation after coronary artery bypass grafting in patients receiving beta-blockers. Circulation. Cardiovascular Genetics, 7(5), 625–633.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kral, B. G., Mathias, R. A., Suktitipat, B., Ruczinski, I., Vaidya, D., Yanek, L. R., et al. (2011). A common variant in the CDKN2B gene on chromosome 9p21 protects against coronary artery disease in Americans of African ancestry. Journal of Human Genetics, 56(3), 224–229.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Lansky, A., Elashoff, M. R., Ng, V., McPherson, J., Lazar, D., Kraus, W. E., et al. (2012). A gender-specific blood-based gene expression score for assessing obstructive coronary artery disease in nondiabetic patients: results of the Personalized Risk Evaluation and Diagnosis in the Coronary Tree (PREDICT) trial. American Heart Journal, 164(3), 320–326.CrossRefPubMedGoogle Scholar
  20. 20.
    Lappe, J. M., Horne, B. D., Shah, S. H., May, H. T., Muhlestein, J. B., Lappe, D. L., et al. (2011). Red cell distribution width, C-reactive protein, the complete blood count, and mortality in patients with coronary disease and a normal comparison population. Clinica Chimica Acta, 412(23-24), 2094–2099.CrossRefGoogle Scholar
  21. 21.
    Minear, M. A., Crosslin, D. R., Sutton, B. S., Connelly, J. J., Nelson, S. C., Gadson-Watson, S., et al. (2011). Polymorphic variants in tenascin-C (TNC) are associated with atherosclerosis and coronary artery disease. Human Genetics, 129(6), 641–654.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Nolan, D. K., Sutton, B., Haynes, C., Johnson, J., Sebek, J., Dowdy, E., et al. (2012). Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5. BMC Genetics, 13, 12.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Peloso, G. M., Auer, P. L., Bis, J. C., Voorman, A., Morrison, A. C., Stitziel, N. O., et al. (2014). Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. American Journal of Human Genetics, 94(2), 223–232.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Rosenberg, S., Elashoff, M. R., Beineke, P., Daniels, S. E., Wingrove, J. A., Tingley, W. G., et al. (2010). Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Annals of Internal Medicine, 153(7), 425–434.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Rosenberg, S., Elashoff, M. R., Lieu, H. D., Brown, B. O., Kraus, W. E., Schwartz, R. S., et al. (2012). Whole blood gene expression testing for coronary artery disease in nondiabetic patients: major adverse cardiovascular events and interventions in the PREDICT trial. Journal of Cardiovascular Translational Research, 5(3), 366–374.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Sehnert, A. J., Daniels, S. E., Elashoff, M., Wingrove, J. A., Burrow, C. R., Horne, B., et al. (2008). Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. Journal of the American College of Cardiology, 52(8), 644–651.CrossRefPubMedGoogle Scholar
  27. 27.
    Shah, A. A., Craig, D. M., Sebek, J. K., Haynes, C., Stevens, R. C., Muehlbauer, M. J., et al. (2012). Metabolic profiles predict adverse events after coronary artery bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 143(4), 873–878.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Shah, S. H., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Crosslin, D. R., Haynes, C., et al. (2010). Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circulation. Cardiovascular Genetics, 3(2), 207–214.CrossRefPubMedGoogle Scholar
  29. 29.
    Shah, S. H., Freedman, N. J., Zhang, L., Crosslin, D. R., Stone, D. H., Haynes, C., et al. (2009). Neuropeptide Y gene polymorphisms confer risk of early-onset atherosclerosis. PLoS Genetics, 5(1), e1000318.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Shah, S. H., Granger, C. B., Hauser, E. R., Kraus, W. E., Sun, J. L., Pieper, K., et al. (2010). Reclassification of cardiovascular risk using integrated clinical and molecular biosignatures: design of and rationale for the Measurement to Understand the Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK) Horizon 1 cardiovascular disease study. American Heart Journal, 160(3), 371–379.CrossRefPubMedGoogle Scholar
  31. 31.
    Shah, S. H., Hauser, E. R., Crosslin, D., Wang, L., Haynes, C., Connelly, J., et al. (2008). ALOX5AP variants are associated with in-stent restenosis after percutaneous coronary intervention. Atherosclerosis, 201(1), 148–154.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Shah, S. H., Sun, J. L., Stevens, R. D., Bain, J. R., Muehlbauer, M. J., Pieper, K. S., et al. (2012). Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. American Heart Journal, 163(5), 844–850. doi: 10.1016/j.ahj.2012.02.005. e841.CrossRefPubMedGoogle Scholar
  33. 33.
    Singh, A., Babyak, M. A., Nolan, D. K., Brummett, B. H., Jiang, R., Siegler, I. C., et al. (2014). Gene by stress genome-wide interaction analysis and path analysis identify EBF1 as a cardiovascular and metabolic risk gene. European Journal of Human Genetics. doi: 10.1038/ejhg.2014.189.Google Scholar
  34. 34.
    Strauss, B. W., Valentiner, E. M., Bhattacharya, S., Smerek, M. M., Dunham, A. A., Newby, L. K., et al. (2014). Improving population representation through geographic health information systems: mapping the MURDOCK study. American Journal of Translational Research, 6(4), 402–412.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Sutton, B. S., Crosslin, D. R., Shah, S. H., Nelson, S. C., Bassil, A., Hale, A. B., et al. (2008). Comprehensive genetic analysis of the platelet activating factor acetylhydrolase (PLA2G7) gene and cardiovascular disease in case-control and family datasets. Human Molecular Genetics, 17(9), 1318–1328. doi: 10.1093/hmg/ddn020.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Vargas, J., Lima, J. A., Kraus, W. E., Douglas, P. S., & Rosenberg, S. (2013). Use of the Corus(R) CAD gene expression test for assessment of obstructive coronary artery disease likelihood in symptomatic non-diabetic patients. PLoS Curr, 5 Google Scholar
  37. 37.
    Voora, D., Cyr, D., Lucas, J., Chi, J. T., Dungan, J., McCaffrey, T. A., et al. (2013). Aspirin exposure reveals novel genes associated with platelet function and cardiovascular events. Journal of the American College of Cardiology, 62(14), 1267–1276.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Wang, L., Hauser, E. R., Shah, S. H., Pericak-Vance, M. A., Haynes, C., Crosslin, D., et al. (2007). Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease. American Journal of Human Genetics, 80(4), 650–663.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Wang, L., Hauser, E. R., Shah, S. H., Seo, D., Sivashanmugam, P., Exum, S. T., et al. (2008). Polymorphisms of the tumor suppressor gene LSAMP are associated with left main coronary artery disease. Annals of Human Genetics, 72(Pt 4), 443–453.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Ward-Caviness, C., Haynes, C., Blach, C., Dowdy, E., Gregory, S. G., Shah, S. H., et al. (2013). Gene-smoking interactions in multiple Rho-GTPase pathway genes in an early-onset coronary artery disease cohort. Human Genetics, 132(12), 1371–1382.CrossRefPubMedGoogle Scholar
  41. 41.
    Ward-Caviness, C. K., Kraus, W. E., Blach, C., Haynes, C. S., Dowdy, E., Miranda, M. L., et al. (2015). Association of roadway proximity with fasting plasma glucose and metabolic risk factors for cardiovascular disease in a cross-sectional study of cardiac catheterization patients. Environ Health Perspect, (in press).Google Scholar
  42. 42.
    Wingrove, J. A., Daniels, S. E., Sehnert, A. J., Tingley, W., Elashoff, M. R., Rosenberg, S., et al. (2008). Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circulation. Cardiovascular Genetics, 1(1), 31–38.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • William E. Kraus
    • 1
    • 2
    Email author
  • Christopher B. Granger
    • 1
    • 3
  • Michael H. SketchJr.
    • 1
  • Mark P. Donahue
    • 1
  • Geoffrey S. Ginsburg
    • 4
  • Elizabeth R. Hauser
    • 1
    • 2
  • Carol Haynes
    • 2
  • L. Kristin Newby
    • 1
    • 3
  • Melissa Hurdle
    • 2
  • Z. Elaine Dowdy
    • 2
  • Svati H. Shah
    • 1
    • 2
  1. 1.Division of Cardiology, Department of Medicine, School of MedicineDuke UniversityDurhamUSA
  2. 2.Duke Molecular Physiology Institute, School of MedicineDuke UniversityDurhamUSA
  3. 3.Duke Clinical Research Institute, School of MedicineDuke UniversityDurhamUSA
  4. 4.Duke Center for Applied Genomics and Precision MedicineDuke UniversityDurhamUSA

Personalised recommendations