N-acetylcysteine Plus Deferoxamine Improves Cardiac Function in Wistar Rats After Non-reperfused Acute Myocardial Infarction

  • Amanda Phaelante
  • Luís Eduardo Rohde
  • Amanda Lopes
  • Virgílio Olsen
  • Santiago Alonso Leitão Tobar
  • Carolina Cohen
  • Nidiane Martinelli
  • Andréia Biolo
  • Felipe Dal-Pizzol
  • Nadine Clausell
  • Michael AndradesEmail author


The antioxidant N-acetycysteine can turn into a prooxidant molecule in presence of iron ions. Thus, our goal was to test if the association of N-acetylcysteine (NAC) and an iron chelator (deferoxamine—DFX) in a rodent model of acute myocardial infarction (AMI) improves cardiac function. Male Wistar rats were subjected to a SHAM surgery or AMI. The animals were randomized: vehicle, NAC (25 mg/kg for 28 days), DFX (40 mg/kg for 7 days), or NAC plus DFX (NAC plus DFX, respectively). Animals were killed 28 days after the AMI. Animals treated with NAC/DFX showed an increase in left ventricular ejection fraction at 28 days when compared with vehicle group (45.2 ± 10.9 % vs. 34.7 ± 8.7 %, p = 0.03). Antioxidant effect of NAC/DFX treatment decreased 4-hydroxynonenal when compared to AMI group (p = 0.06). In conclusion, we showed beneficial effect of NAC/DFX association in improving left ventricle function in an experimental AMI.


N-acetylcysteine Deferoxamine Heart failure Myocardial infarction Oxidative stress 



Acute myocardial infarction




Ejection fraction


Fractional shortening




Left ventricular


Left ventricular diastolic diameter


Left ventricular systolic diameter




Perimeter of the endocardium


Reactive oxygen species



This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Secretaria de Ciência e Tecnologia da Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS # 11/1970-3), and Fundo de Incentivo à Pesquisa e Eventos do Hospital de Clínicas de Porto Alegre (FIPE-HCPA).

Animal Study

No human studies were carried out by the authors for this article.

All procedures followed during this investigation are in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996), and the experimental protocol was approved by the Ethics Committee of the Hospital de Clinicas de Porto Alegre (CEUA) by the number 110202.


  1. 1.
    Baykan, M., Celik, U., Orem, A., Malkoc, M., Erdol, C., Baykan, E. C., et al. (2001). Iron status and its relationship with lipid peroxidation in patients with acute myocardial infarction. Acta Cardiologica, 56(5), 277–281. doi: 10.2143/AC.56.5.2005687.PubMedCrossRefGoogle Scholar
  2. 2.
    Xu, J., Zhao, J., Evan, G., Xiao, C., Cheng, Y., & Xiao, J. (2012). Circulating microRNAs: novel biomarkers for cardiovascular diseases. Journal of Molecular Medicine (Berl), 90(8), 865–875. doi: 10.1007/s00109-011-0840-5.CrossRefGoogle Scholar
  3. 3.
    Khaper, N., Bryan, S., Dhingra, S., Singal, R., Bajaj, A., Pathak, C. M., et al. (2010). Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxidants and Redox Signaling, 13(7), 1033–1049. doi: 10.1089/ars.2009.2930.PubMedCrossRefGoogle Scholar
  4. 4.
    Lombardi, R., Rodriguez, G., Chen, S. N., Ripplinger, C. M., Li, W., Chen, J., et al. (2009). Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation, 119(10), 1398–1407. doi: 10.1161/CIRCULATIONAHA.108.790501.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bonow, M., Douglas L. Mann, MD, Facc, Douglas P. Zipes, MD and Peter Libby, MD (2011). Braunwald’s heart disease—A textbook of cardiovascular medicine. 9th ed. Google Scholar
  6. 6.
    Samuni, Y., Goldstein, S., Dean, O. M., & Berk, M. (2013). The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta, 1830(8), 4117–4129. doi: 10.1016/j.bbagen.2013.04.016.PubMedCrossRefGoogle Scholar
  7. 7.
    Sochman, J. (2002). N-acetylcysteine in acute cardiology: 10 years later: what do we know and what would we like to know?! Journal of the American College of Cardiology, 39(9), 1422–1428. doi: 10.1016/S0735-1097(02)01797-7.PubMedCrossRefGoogle Scholar
  8. 8.
    Peker, O., Peker, T., Erdogan, D., Ozaydin, M., Kapan, S., Sutcu, R., et al. (2008). Effects of intravenous N-acetylcysteine on periprocedural myocardial injury after on-pump coronary artery by-pass grafting. The Journal of Cardiovascular Surgery, 49(4), 527–531.PubMedGoogle Scholar
  9. 9.
    Braunersreuther, V., & Jaquet, V. (2012). Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Current Pharmaceutical Biotechnology, 13(1), 97–114. doi: 10.2174/138920112798868782.PubMedCrossRefGoogle Scholar
  10. 10.
    Sagrista, M. L., Garcia, A. E., Africa De Madariaga, M., & Mora, M. (2002). Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-L-cysteine and glutathione against free radical-induced lipid peroxidation. Free Radical Research, 36(3), 329–340. doi: 10.1080/10715760290019354.PubMedCrossRefGoogle Scholar
  11. 11.
    Sprong, R. C., Winkelhuyzen-Janssen, A. M., Aarsman, C. J., van Oirschot, J. F., van der Bruggen, T., & van Asbeck, B. S. (1998). Low-dose N-acetylcysteine protects rats against endotoxin-mediated oxidative stress, but high-dose increases mortality. American Journal of Respiratory and Critical Care Medicine, 157(4 Pt 1), 1283–1293. doi: 10.1164/ajrccm.157.4.9508063.PubMedCrossRefGoogle Scholar
  12. 12.
    Chopra, K., Singh, M., Kaul, N., Andrabi, K. I., & Ganguly, N. K. (1992). Decrease of myocardial infarct size with desferrioxamine: possible role of oxygen free radicals in its ameliorative effect. Molecular and Cellular Biochemistry, 113(1), 71–76. doi: 10.1007/BF00230887.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, T., Brittenham, G. M., Dong, W. Q., Levy, M. N., Obejero-Paz, C. A., Kuryshev, Y. A., et al. (2003). Deferoxamine prevents cardiac hypertrophy and failure in the gerbil model of iron-induced cardiomyopathy. Journal of Laboratory and Clinical Medicine, 142(5), 332–340. doi: 10.1016/S0022-2143(03)00135-5.PubMedCrossRefGoogle Scholar
  14. 14.
    Chan, W., Taylor, A. J., Ellims, A. H., Lefkovits, L., Wong, C., Kingwell, B. A., et al. (2012). Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circulation. Cardiovascular Interventions, 5(2), 270–278. doi: 10.1161/CIRCINTERVENTIONS.111.966226.PubMedCrossRefGoogle Scholar
  15. 15.
    Gutteridge, J. M., Richmond, R., & Halliwell, B. (1979). Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochemical Journal, 184(2), 469–472.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Fraga, C. M., Tomasi, C. D., Biff, D., Topanotti, M. F., Felisberto, F., Vuolo, F., et al. (2012). The effects of N-acetylcysteine and deferoxamine on plasma cytokine and oxidative damage parameters in critically ill patients with prolonged hypotension: a randomized controlled trial. Journal of Clinical Pharmacology, 52(9), 1365–1372. doi: 10.1177/0091270011418657.PubMedCrossRefGoogle Scholar
  17. 17.
    Ritter, C., Andrades, M. E., Reinke, A., Menna-Barreto, S., Moreira, J. C., & Dal-Pizzol, F. (2004). Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Critical Care Medicine, 32(2), 342–349. doi: 10.1097/01.CCM.0000109454.13145.CA.PubMedCrossRefGoogle Scholar
  18. 18.
    Ritter, C., da Cunha, A. A., Echer, I. C., Andrades, M., Reinke, A., Lucchiari, N., et al. (2006). Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Critical Care Medicine, 34(2), 471–477. doi: 10.1097/01.CCM.0000199069.19193.89.PubMedCrossRefGoogle Scholar
  19. 19.
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology, 8(6), e1000412. doi: 10.1371/journal.pbio.1000412.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44(4), 503–512. doi: 10.1161/01.RES.44.4.503.PubMedCrossRefGoogle Scholar
  21. 21.
    Tavares, A. M., da Rosa Araujo, A. S., Baldo, G., Matte, U., Khaper, N., Bello-Klein, A., et al. (2010). Bone marrow derived cells decrease inflammation but not oxidative stress in an experimental model of acute myocardial infarction. Life Sciences, 87(23–26), 699–706. doi: 10.1016/j.lfs.2010.10.008.PubMedCrossRefGoogle Scholar
  22. 22.
    Vietta, G. G., Andrades, M. E., Dall'alba, R., Schneider, S. I., Frick, L. M., Matte, U., et al. (2013). Early use of cardiac troponin-I and echocardiography imaging for prediction of myocardial infarction size in Wistar rats. Life Sciences, 93(4), 139–144. doi: 10.1016/j.lfs.2013.05.026.PubMedCrossRefGoogle Scholar
  23. 23.
    O'Brien, P. J., Smith, D. E., Knechtel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., et al. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animals, 40(2), 153–171. doi: 10.1258/002367706776319042.PubMedCrossRefGoogle Scholar
  24. 24.
    Artiss, J. D., Vinogradov, S., & Zak, B. (1981). Spectrophotometric study of several sensitive reagents for serum iron. Clinical Biochemistry, 14(6), 311–315.PubMedCrossRefGoogle Scholar
  25. 25.
    Vandenbossche, J. L., Kramer, B. L., Massie, B. M., Morris, D. L., & Karliner, J. S. (1984). Two-dimensional echocardiographic evaluation of the size, function and shape of the left ventricle in chronic aortic regurgitation: comparison with radionuclide angiography. Journal of the American College of Cardiology, 4(6), 1195–1206.PubMedCrossRefGoogle Scholar
  26. 26.
    Peron, A. P., Saraiva, R. M., Antonio, E. L., & Tucci, P. J. (2006). Mechanical function is normal in remanent myocardium during the healing period of myocardial infarction—despite congestive heart failure. Arquivos Brasileiros de Cardiologia, 86(2), 105–112. doi: 10.1590/S0066-782X2006000200005.PubMedCrossRefGoogle Scholar
  27. 27.
    Neto, E. P., Fuhrich, D. G., Carson, D. D., Engel, B. J., & Savaris, R. F. (2014). Elafin expression in mucosa of fallopian tubes is altered by hydrosalpinx. Reproductive Sciences, 21(3), 401–407. doi: 10.1177/1933719113497291.PubMedCrossRefGoogle Scholar
  28. 28.
    Soszynski, M., & Bartosz, G. (1997). Decrease in accessible thiols as an index of oxidative damage to membrane proteins. Free Radical Biology and Medicine, 23(3), 463–469. doi: 10.1016/S0891-5849(97)00117-2.PubMedCrossRefGoogle Scholar
  29. 29.
    Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357. doi: 10.1016/S0076-6879(94)33040-9.PubMedCrossRefGoogle Scholar
  30. 30.
    Meyer, M., Bell, S. P., Chen, Z., Nyotowidjojo, I., Lachapelle, R. R., Christian, T. F., et al. (2013). High dose intracoronary N-acetylcysteine in a porcine model of ST-elevation myocardial infarction. Journal of Thrombosis and Thrombolysis, 36(4), 433–441. doi: 10.1007/s11239-013-0901-4.PubMedCrossRefGoogle Scholar
  31. 31.
    Talasaz, A. H., Khalili, H., Jenab, Y., Salarifar, M., Broumand, M. A., & Darabi, F. (2013). N-Acetylcysteine effects on transforming growth factor-beta and tumor necrosis factor-alpha serum levels as pro-fibrotic and inflammatory biomarkers in patients following ST-segment elevation myocardial infarction. Drugs R D, 13(3), 199–205. doi: 10.1007/s40268-013-0025-5.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ritter, C., Reinke, A., Andrades, M., Martins, M. R., Rocha, J., Menna-Barreto, S., et al. (2004). Protective effect of N-acetylcysteine and deferoxamine on carbon tetrachloride-induced acute hepatic failure in rats. Critical Care Medicine, 32(10), 2079–2083. doi: 10.1097/01.CCM.0000142699.54266.D9.PubMedCrossRefGoogle Scholar
  33. 33.
    Roodenburg, A. J. C., West, C. E., & Beynen, A. C. (1996). Iron status in female rats with different, stable plasma retinol concentrations. Nutrition Research, 16(7), 1199–1209. doi: 10.1016/0271-5317(96)00124-8.CrossRefGoogle Scholar
  34. 34.
    Steen, D. L., Cannon, C. P., Lele, S. S., Rajapurkar, M. M., Mukhopadhyay, B., Scirica, B. M., et al. (2013). Prognostic evaluation of catalytic iron in patients with acute coronary syndromes. Clinical Cardiology, 36(3), 139–145. doi: 10.1002/clc.22089.PubMedCrossRefGoogle Scholar
  35. 35.
    Lele, S., Shah, S., McCullough, P. A., & Rajapurkar, M. (2009). Serum catalytic iron as a novel biomarker of vascular injury in acute coronary syndromes. EuroIntervention, 5(3), 336–342. doi: 10.4103/0971-4065.116293.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee, T. M., Lai, P. Y., & Chang, N. C. (2010). Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts. Cardiovascular Research, 85(1), 137–146. doi: 10.1093/cvr/cvp286.PubMedCrossRefGoogle Scholar
  37. 37.
    Casasco, A., Calligaro, A., Casasco, M., Tateo, S., Icaro Cornaglia, A., Reguzzoni, M., et al. (1997). Immunohistochemical localization of lipoperoxidation products in normal human placenta. Placenta, 18(4), 249–253. doi: 10.1016/S0143-4004(97)80058-6.PubMedCrossRefGoogle Scholar
  38. 38.
    Zima, A. V., & Blatter, L. A. (2006). Redox regulation of cardiac calcium channels and transporters. Cardiovascular Research, 71(2), 310–321. doi: 10.1016/j.cardiores.2006.02.019.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsutsui, H. (2001). Oxidative stress in heart failure: the role of mitochondria. Internal Medicine, 40(12), 1177–1182. doi: 10.2169/internalmedicine.40.1177.PubMedCrossRefGoogle Scholar
  40. 40.
    Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovascular Pathology, 15(2), 83–90. doi: 10.1016/j.carpath.2005.10.006.PubMedCrossRefGoogle Scholar
  41. 41.
    Fraga, C. M., Tomasi, C. D., Biff, D., Topanotti, M. F., Felisberto, F., Vuolo, F., et al. (2011). The effects of N-acetylcysteine and deferoxamine on plasma cytokine and oxidative damage parameters in critically ill patients with prolonged hypotension: a randomized controlled trial. Journal of Clinical Pharmacology. doi: 10.1177/0091270011418657.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amanda Phaelante
    • 1
    • 2
  • Luís Eduardo Rohde
    • 1
    • 2
  • Amanda Lopes
    • 1
  • Virgílio Olsen
    • 1
  • Santiago Alonso Leitão Tobar
    • 1
  • Carolina Cohen
    • 1
  • Nidiane Martinelli
    • 1
  • Andréia Biolo
    • 1
    • 2
  • Felipe Dal-Pizzol
    • 3
  • Nadine Clausell
    • 1
    • 2
  • Michael Andrades
    • 1
    • 2
    Email author
  1. 1.Cardiovascular Research Laboratory, Experimental Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
  2. 2.Post-Graduate Program in Cardiology and Cardiovascular ScienceUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Departamento de MedicinaUniversidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations