Journal of Cardiovascular Translational Research

, Volume 7, Issue 8, pp 737–748 | Cite as

Medical Devices and Diagnostics for Cardiovascular Diseases in Low-Resource Settings

  • Helen McGuire
  • Bernhard H. WeiglEmail author


Noncommunicable diseases (NCDs), including cardiovascular diseases and diabetes, have emerged as an underappreciated health threat with enormous economic and public health implications for populations in low-resource settings. In order to address these diseases, devices that are to be used in low-resource settings have to conform to requirements that are generally more challenging than those developed for traditional markets. Characteristics and issues that must be considered when working in low- and middle-income countries (LMICs) include challenging environmental conditions, a complex supply chain, sometimes inadequate operator training, and cost. Somewhat counterintuitively, devices for low-resource setting (LRS) markets need to be of at least as high quality and reliability as those for developed countries to be setting-appropriate and achieve impact. Finally, the devices need to be designed and tested for the populations in which they are to be used in order to achieve the performance that is needed. In this review, we focus on technologies for primary and secondary health-care settings and group them according to the continuum of care from prevention to treatment.


Diabetes Cardiovascular disease Diagnostics Screening Low-resource settings Global health Health technologies Product development Chronic disease 



We would like to acknowledge PATH’s Reach Campaign and Transformation awards program for its leadership in providing seed funding to the NCD program.


  1. 1.
    World Health Organization (2010) Global status report on noncommunicable diseases 2010. Accessed 14 May 2014
  2. 2.
    Bhide, R. K. (2010). The need for a low-cost ventricular assist device in India. Artificial Organs, 34, 792. doi: 10.1111/j.1525-1594.2010.01067.x.PubMedCrossRefGoogle Scholar
  3. 3.
    Kayima, J., Wanyenze, R. K., Katamba, A., et al. (2013). Hypertension awareness, treatment and control in Africa: a systematic review. BMC Cardiovascular Disorders, 13, 54. doi: 10.1186/1471-2261-13-54.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Fox, C. S., Pencina, M. J., Wilson, P. W. F., et al. (2008). Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham heart study. Diabetes Care, 31, 1582–1584. doi: 10.2337/dc08-0025.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Epping-Jordan J (2002) Innovative care for chronic conditions: building blocks for action: global report. Noncommunicable Diseases and Mental Health, World Health Organization. Accessed 19 May 2014
  6. 6.
    Wagner, E. H., Austin, B. T., & Von Korff, M. (1996). Organizing care for patients with chronic illness. Milbank Quarterly, 74, 511–544.PubMedCrossRefGoogle Scholar
  7. 7.
    Wagner, E. H., Davis, C., Schaefer, J., et al. (1999). A survey of leading chronic disease management programs: are they consistent with the literature? Managed Care Quarterly, 7, 56–66.PubMedGoogle Scholar
  8. 8.
    Muna, W. F. T. (2013). Comprehensive strategies for the prevention and control of diabetes and cardiovascular diseases in Africa: future directions. Progress in Cardiovascular Diseases, 56, 363–366. doi: 10.1016/j.pcad.2013.10.012.PubMedCrossRefGoogle Scholar
  9. 9.
    Valluri, S., & Gaziano, T. A. (2013). Progress in national and regional guidelines development and deployment for the clinical prevention and control of CVD and diabetes in Africa. Progress in Cardiovascular Diseases, 56, 336–343. doi: 10.1016/j.pcad.2013.09.014.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bovet, P., Gervasoni, J.-P., Mkamba, M., et al. (2008). Low utilization of health care services following screening for hypertension in Dar es Salaam (Tanzania): a prospective population-based study. BMC Public Health, 8, 407. doi: 10.1186/1471-2458-8-407.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Weatherall, D. J., & Clegg, J. B. (2008). The thalassaemia syndromes. John Wiley &: Sons.Google Scholar
  12. 12.
    Neogi T, Weigl B, van Pelt M, et al. (2012) Value and implications of alternative diabetes screening tool proposed PATH-Mo Po Tsyo study.Google Scholar
  13. 13.
    Weigl, B., de los Santos, T., Steele, M., & Domingo, G. (2006). High-tech IVDs for low-resource settings. IVD Technology Magazine, 39–45.Google Scholar
  14. 14.
    Vodopivec-Jamsek, V., de Jongh, T., Gurol-Urganci, I., et al. (2012). Mobile phone messaging for preventive health care. Cochrane Database of Systematic Reviews, 12, CD007457. doi: 10.1002/14651858.CD007457.pub2.PubMedGoogle Scholar
  15. 15.
    Free, C., Knight, R., Robertson, S., et al. (2011). Smoking cessation support delivered via mobile phone text messaging (txt2stop): a single-blind, randomised trial. Lancet, 378, 49–55. doi: 10.1016/S0140-6736(11)60701-0.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Tate, E. B., Spruijt-Metz, D., O’Reilly, G., et al. (2013). mHealth approaches to child obesity prevention: successes, unique challenges, and next directions. Translational Behavioral Medicine, 3, 406–415. doi: 10.1007/s13142-013-0222-3.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Am, Lenhart a, Purcell K, et al. Social media and young adults. Pew Res. Cent. Internet Am. Life Proj.Google Scholar
  18. 18.
    Krishna, S., Boren, S. A., & Balas, E. A. (2009). Healthcare via cell phones: a systematic review. Telemed J E-Health Official J American Telemed Associations, 15, 231–240. doi: 10.1089/tmj.2008.0099.CrossRefGoogle Scholar
  19. 19.
    Riley, W. T., Rivera, D. E., Atienza, A. A., et al. (2011). Health behavior models in the age of mobile interventions: are our theories up to the task? Translational Behavioral Medicine, 1, 53–71. doi: 10.1007/s13142-011-0021-7.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Tate DF (2008) Application of innovative technologies in the prevention and treatment of overweight in children and adolescents. In: Jelalian E, ABPP RGS (eds) Handbook of childhood and adolescent obesity. Springer US, pp 387–404Google Scholar
  21. 21.
    Gance-Cleveland, B., Gilbert, L. H., Kopanos, T., & Gilbert, K. C. (2010). Evaluation of technology to identify and assess overweight children and adolescents. Journal Specialist in Pediatric Nursing JSPN, 15, 72–83. doi: 10.1111/j.1744-6155.2009.00220.x.CrossRefGoogle Scholar
  22. 22.
    Dunton, G. F., & Atienza, A. A. (2009). The need for time-intensive information in healthful eating and physical activity research: a timely topic. Journal of the American Dietetic Association, 109, 30–35. doi: 10.1016/j.jada.2008.10.019.PubMedCrossRefGoogle Scholar
  23. 23.
    Fox S, Duggan M. Mobile health 2012. Pew Res. Cent. Internet Am. Life ProjGoogle Scholar
  24. 24.
    Noble, D., Mathur, R., Dent, T., et al. (2011). Risk models and scores for type 2 diabetes: systematic review. BMJ, 343, d7163–d7163. doi: 10.1136/bmj.d7163.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Cuevas, A., Arteaga, A., & Rigotti, A. (2014). A Latin American perspective on the new ACC/AHA clinical guidelines for managing atherosclerotic cardiovascular disease. Current Atherosclerosis Reports, 16, 400. doi: 10.1007/s11883-014-0400-x.PubMedCrossRefGoogle Scholar
  26. 26.
    Weigl, B. H., & Drake, J. K. (2013). Developing an adaptable set of point-of-care diabetes screening technologies for low-resource settings: point care. J -Patient Test Technology, 12, 33–40. doi: 10.1097/POC.0b013e318265f789.Google Scholar
  27. 27.
    International Diabetes Federation (2012) Global guideline for type 2 diabetes. Accessed 14 May 2014
  28. 28.
    American Diabetes Association. (2011). Diagnosis and classification of diabetes mellitus. Diabetes Care, 34, S62–S69. doi: 10.2337/dc11-S062.PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bode, B. W., Irvin, B. R., Pierce, J. A., et al. (2007). Advances in hemoglobin A1c point of care technology. Journal of Diabetes Science and Technology, 1, 405–411.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Cagliero, E., Levina, E. V., & Nathan, D. M. (1999). Immediate feedback of HbA1c levels improves glycemic control in type 1 and insulin-treated type 2 diabetic patients. Diabetes Care, 22, 1785–1789.PubMedCrossRefGoogle Scholar
  31. 31.
    Koetsier, M., Lutgers, H. L., de Jonge, C., et al. (2010). Reference values of skin autofluorescence. Diabetes Technology & Therapeutics, 12, 399–403. doi: 10.1089/dia.2009.0113.CrossRefGoogle Scholar
  32. 32.
    Ramachandran, A., Moses, A., Shetty, S., et al. (2010). A new non-invasive technology to screen for dysglycaemia including diabetes. Diabetes Research and Clinical Practice, 88, 302–306. doi: 10.1016/j.diabres.2010.01.023.PubMedCrossRefGoogle Scholar
  33. 33.
    World Health Organization (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Accessed 14 May 2014
  34. 34.
    World Health Organization (2003) Screening for type 2 diabetes. Accessed 14 May 2014
  35. 35.
    Hansarikit, J., & Manotaya, S. (2011). Sensitivity and specificity of modified 100-g oral glucose tolerance tests for diagnosis of gestational diabetes mellitus. Journal Medicine Association Thailand Chotmaihet Thangphaet, 94, 540–544.Google Scholar
  36. 36.
    Bennett, C. M., Guo, M., & Dharmage, S. C. (2007). HbA(1c) as a screening tool for detection of type 2 diabetes: a systematic review. Diabet Medicine Journal British Diabetes Association, 24, 333–343. doi: 10.1111/j.1464-5491.2007.02106.x.CrossRefGoogle Scholar
  37. 37.
    Dominiczak, M. H., Macrury, S. M., Orrell, J. M., & Paterson, K. R. (1988). Long-term performance of the fructosamine assay. Annals of Clinical Biochemistry, 25(Pt 6), 627–633.PubMedCrossRefGoogle Scholar
  38. 38.
    Weigl BH, Zwisler G, Peck R, Abu-Haydar E (2013) Rapid screening test for gestational diabetes: public health need, market requirement, initial product design, and experimental results. In: Becker H, Gray BL (eds)p 86150LGoogle Scholar
  39. 39.
    Behan, K. J., & Merschen, J. (2011). HbA1c does not always estimate average glucose. Clinical Laboratory Science Journal American Society Medical Technology, 24, 71–77.Google Scholar
  40. 40.
    McDade, T. W., Williams, S., & Snodgrass, J. J. (2007). What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography, 44, 899–925.PubMedCrossRefGoogle Scholar
  41. 41.
    Egier, D. A., Keys, J. L., Hall, S. K., & McQueen, M. J. (2011). Measurement of hemoglobin A1c from filter papers for population-based studies. Clinical Chemistry, 57, 577–585. doi: 10.1373/clinchem.2010.156380.PubMedCrossRefGoogle Scholar
  42. 42.
    McDade, T. W., Burhop, J., & Dohnal, J. (2004). High-sensitivity enzyme immunoassay for C-reactive protein in dried blood spots. Clinical Chemistry, 50, 652–654. doi: 10.1373/clinchem.2003.029488.PubMedCrossRefGoogle Scholar
  43. 43.
    Dowd, J. B., Aiello, A. E., Chyu, L., et al. (2011). Cytomegalovirus antibodies in dried blood spots: a minimally invasive method for assessing stress, immune function, and aging. Immunity & Ageing, 8, 3. doi: 10.1186/1742-4933-8-3.CrossRefGoogle Scholar
  44. 44.
    Frenchik, M. D., McFaul, S. J., & Tsonev, L. I. (2004). A microplate assay for the determination of hemoglobin concentration. Clininical Chim Acta International Journal Clinical Chemistry, 339, 199–201.CrossRefGoogle Scholar
  45. 45.
    McDade, T. W., Stallings, J. F., Angold, A., et al. (2000). Epstein-Barr virus antibodies in whole blood spots: a minimally invasive method for assessing an aspect of cell-mediated immunity. Psychosomatic Medicine, 62, 560–567.PubMedCrossRefGoogle Scholar
  46. 46.
    Pluddemann, A., Thompson, M., Price, C. P., et al. (2012). Point-of-care testing for the analysis of lipid panels: primary care diagnostic technology update. British Journal of General Practice, 62, e224–e226. doi: 10.3399/bjgp12X630241.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Rolland, J. P., & Mourey, D. A. (2013). Paper as a novel material platform for devices. MRS Bulletin, 38, 299–305. doi: 10.1557/mrs.2013.58.CrossRefGoogle Scholar
  48. 48.
    Issadore, D., & Westervelt, R. (2013). Point-of-care diagnostics on a chip. Berlin: Springer-Verlage.CrossRefGoogle Scholar
  49. 49.
    Goff, D. C., Jr., Bertoni, A. G., Kramer, H., et al. (2006). Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation, 113, 647–656. doi: 10.1161/CIRCULATIONAHA.105.552737.PubMedCrossRefGoogle Scholar
  50. 50.
    Enas, E. A., Mohan, V., Deepa, M., et al. (2007). The metabolic syndrome and dyslipidemia among Asian Indians: a population with high rates of diabetes and premature coronary artery disease. Journal of the Cardiometabolic Syndrome, 2, 267–275. doi: 10.1111/j.1559-4564.2007.07392.x.PubMedCrossRefGoogle Scholar
  51. 51.
    Misra, A., & Shrivastava, U. (2013). Obesity and dyslipidemia in South Asians. Nutrients, 5, 2708–2733. doi: 10.3390/nu5072708.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Kishore, S. P., Vedanthan, R., & Fuster, V. (2011). Promoting global cardiovascular health ensuring access to essential cardiovascular medicines in low- and middle-income countries. Journal of the American College of Cardiology, 57, 1980–1987. doi: 10.1016/j.jacc.2010.12.029.PubMedCrossRefGoogle Scholar
  53. 53.
    Ibrahim, M. M., & Damasceno, A. (2012). Hypertension in developing countries. Lancet, 380, 611–619. doi: 10.1016/S0140-6736(12)60861-7.PubMedCrossRefGoogle Scholar
  54. 54.
    Steyn, K. (2006). Hypertension in South Africa. Medical Research: Council.Google Scholar
  55. 55.
    Seedat, Y. K. (1999). Hypertension in black South Africans. Journal of Human Hypertension, 13, 96–103.PubMedGoogle Scholar
  56. 56.
    Li, Y., Gao, Y., & Deng, N. (2013). Mechanism of cuff-less blood pressure measurement using MMSB. Engineering, 05, 123–125. doi: 10.4236/eng.2013.510B025.CrossRefGoogle Scholar
  57. 57.
    Parati, G., Kilama, M. O., Faini, A., et al. (2010). A new solar-powered blood pressure measuring device for low-resource settings. Hypertension, 56, 1047–1053. doi: 10.1161/HYPERTENSIONAHA.110.160408.PubMedCrossRefGoogle Scholar
  58. 58.
    Piette, J. D., Datwani, H., Gaudioso, S., et al. (2012). Hypertension management using mobile technology and home blood pressure monitoring: results of a randomized trial in two low/middle-income countries. Telemed J E-Health Official Journal American Telemed Association, 18, 613–620. doi: 10.1089/tmj.2011.0271.Google Scholar
  59. 59.
    PulsewaveTM MAX. Accessed 15 May 2014
  60. 60.
    Swasthya Slate. Accessed 15 May 2014
  61. 61.
    World Health Organization (2012) Global observatory for eHealth series—volume 6. Accessed 14 May 2014
  62. 62.
    Castells, M., Fernández-Ardèvol, M., Qiu, J. L., & Sey, A. (2009). Mobile communication and society: a global perspective. MIT: Press.Google Scholar
  63. 63.
    Källander, K., Tibenderana, J. K., Akpogheneta, O. J., et al. (2013). Mobile health (mHealth) approaches and lessons for increased performance and retention of community health workers in low- and middle-income countries: a review. Journal of Medical Internet Research, 15, e17. doi: 10.2196/jmir.2130.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Klonoff, D. C. (2013). The current status of mHealth for diabetes: will it be the next big thing? Journal of Diabetes Science and Technology, 7, 749–758.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Thirumurthy, H., & Lester, R. T. (2012). “M-health for health behaviour change in resource-limited settings: applications to HIV care and beyond.” Bulletin of the World Health Organization, 90, 390–392.Google Scholar
  66. 66.
    Nandy, S., Dick, J. J., Chou, C. H. et al. (2014). Mobile phone diabetes project led to improved glycemic control and net savings for chicago plan participants. Health Affairs, 33(2), 265–272.Google Scholar
  67. 67.
    SOMNOtouchTM NIBP. Dokumente/Produktkataloge/SOT-NIBP_engl_Rev0_eMail.pdf. Accessed 15 May 2014
  68. 68.
    The Bill and Melinda Gates Foundation. Grand challenges in global health diagnostics: to develop technologies that help assess multiple conditions or pathogens at point-of-care. _RulesandGuidelines.pdf. Accessed 15 May 2014
  69. 69.
    National Institute of Biomedical Imaging and Bioengineering. Request for application: development and translation of medical technologies that reduce health disparities. Accessed 15 May 2014
  70. 70.
  71. 71.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.PATHWashingtonUSA
  2. 2.PATHSeattleUSA

Personalised recommendations