Journal of Cardiovascular Translational Research

, Volume 7, Issue 8, pp 677–691 | Cite as

Use of mHealth Systems and Tools for Non-Communicable Diseases in Low- and Middle-Income Countries: a Systematic Review

  • David Peiris
  • Devarsetty Praveen
  • Claire Johnson
  • Kishor Mogulluru


With the rapid adoption of mobile devices, mobile health (mHealth) offers the potential to transform health care delivery, especially in the world’s poorest regions. We systematically reviewed the literature to determine the impact of mHealth interventions on health care quality for non-communicable diseases in low- and middle-income countries and to identify knowledge gaps in this rapidly evolving field. Overall, we found few high-quality studies. Most studies narrowly focused on text messaging systems for patient behavior change, and few studies examined the health systems strengthening aspects of mHealth. There were limited literature reporting clinical effectiveness, costs, and patient acceptability, and none reporting equity and safety issues. Despite the bold promise of mHealth to improve health care, much remains unknown about whether and how this will be fulfilled. Encouragingly, we identified some registered clinical trial protocols of large-scale, multidimensional mHealth interventions, suggesting that the current limited evidence base will expand in coming years.


mHealth Mobile health Non-communicable diseases Low and middle income countries Evidence Quality Evaluation 



Non-communicable diseases


Low- and middle-income countries


Cardiovascular disease


United Nations


World Health Organization Package of Essential NCD interventions


Primary health care


Mobile health


Excerpta Medica database


Cumulative Index to Nursing and Allied Health Literature


Latin American and Caribbean Health Science Literature Database


World Health Organization


Randomized controlled trial

Supplementary material

12265_2014_9581_MOESM1_ESM.pdf (24 kb)
Supplementary Tables S1(PDF 24 kb)
12265_2014_9581_MOESM2_ESM.pdf (16 kb)
Supplementary Tables S2(PDF 15 kb)
12265_2014_9581_MOESM3_ESM.pdf (6 kb)
Supplementary Tables S3(PDF 5 kb)
12265_2014_9581_MOESM4_ESM.pdf (16 kb)
Supplementary Tables S4(PDF 15 kb)
12265_2014_9581_MOESM5_ESM.pdf (8 kb)
Supplementary Tables S5(PDF 8 kb)
12265_2014_9581_MOESM6_ESM.pdf (5 kb)
Supplementary Tables S6(PDF 4 kb)
12265_2014_9581_MOESM7_ESM.pdf (4 kb)
Supplementary Tables S7(PDF 4 kb)
12265_2014_9581_MOESM8_ESM.pdf (44 kb)
Supplementary Tables S8(PDF 43 kb)


  1. 1.
    Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. The Lancet, 380(9859), 2095–128.CrossRefGoogle Scholar
  2. 2.
    World Health Organisation. (2013). Global action plan for the prevention and control of noncommunicable diseases 2013–2020. Geneva: WHO.Google Scholar
  3. 3.
    Kontis V, Mathers CD, Rehm J, Stevens GA, Shield KD, Bonita R, et al. (2014) Contribution of six risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study. The LancetGoogle Scholar
  4. 4.
    Pearce, N., Ebrahim, S., McKee, M., Lamptey, P., Barreto, M. L., Matheson, D., et al. (2014). The road to 25 × 25: how can the five-target strategy reach its goal? The Lancet Global Health, 2(3), e126–e28.PubMedCrossRefGoogle Scholar
  5. 5.
    World Health Organisation. (2010). Package of essential noncommunicable (PEN) disease interventions for primary health care in low-resource settings. Geneva: WHO.Google Scholar
  6. 6.
    PricewaterhouseCoopers (PwC) (2012). Emerging mHealth: paths for growth PWC.Google Scholar
  7. 7.
    Labrique, A., Vasudevan, L., Chang, L. W., & Mehl, G. (2013). H_pe for mHealth: More “y” or “o” on the horizon? International Journal of Medical Informatics, 82(5), 467–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Mechael, P., Batavia, H., Kaonga, N., Searle, S., Kwan, A., Goldberger, A., et al. (2010). Barriers and gaps affecting mhealth in low and middle income countries: policy white paper: center for global health and economic development. Earth Institute: Columbia University.Google Scholar
  9. 9.
    World Health Organisation. (2011). mHealth: New horizons for health through mobile technologies. Geneva: Global Observatory for eHealth series.Google Scholar
  10. 10.
    Free, C., Phillips, G., Watson, L., Galli, L., Felix, L., Edwards, P., et al. (2013). The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis. PLoS Medicine, 10(1), e1001363.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Krishna, S. B. S., & Balas, E. A. (2009). Healthcare via cell phones: a systematic review. Telemedicine journal and e-health: the official journal of the American telemedicine association, 15(3), 231–40.CrossRefGoogle Scholar
  12. 12.
    Nhavoto, A. J., & Grönlund, Å. (2014). Mobile technologies and geographic information systems to improve health care systems: a literature review. JMIR Mhealth Uhealth, 2(2), e21.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Aranda-Jan, C., Mohutsiwa-Dibe, N., & Loukanova, S. (2014). Systematic review on what works, what does not work and why of implementation of mobile health (mHealth) projects in Africa. BMC Public Health, 14(1), 188.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Braun, R., Catalani, C., Wimbush, J., & Israelski, D. (2013). Community health workers and mobile technology: a systematic review of the literature. PLoS One, 8(6), e65772.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Goel, S., Bhatnagar, N., Sharma, D., & Singh, A. (2013). Bridging the human resource gap in primary health care delivery systems of developing countries with mhealth: narrative literature review. JMIR Mhealth Uhealth, 1(2), e25.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Beratarrechea, A., Lee, A. G., Willner, J. M., Jahangir, E., & Ciapponi, A. A. R. (2014). The impact of mobile health interventions on chronic disease outcomes in developing countries: a systematic review. Telemedicine journal and e-health: the official journal of the American Telemedicine Association, 20(1), 75–82.CrossRefGoogle Scholar
  17. 17.
    World Bank Group. (2014). Country and lending groups. Washington DC: World Bank.Google Scholar
  18. 18.
    Labrique A, Vasudevan L, Kochi E, Fabricant R, Mehld G (2013). mHealth innovations as health system strengthening tools:12 common applications and a visual framework. Global Health: Science and Practice.Google Scholar
  19. 19.
    World Health Organisation (2006). Quality of care: a process for making strategic choices in health systems. Geneva.Google Scholar
  20. 20.
    Ajay, V. S., & Prabhakaran, D. (2011). The scope of cell phones in diabetes management in developing country health care settings. Journal of Diabetes Science and Technology, 5(3), 778–83.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ali, M. K., Shah, S., & Tandon, N. (2011). Review of electronic decision-support tools for diabetes care: a viable option for low- and middle-income countries? Journal of Diabetes Science and Technology, 5(3), 553–70.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Feder, J. L. (2010). Cell-phone medicine brings care to patients in developing nations. Health affairs Project Hope, 29(2), 259–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Goodarzi, M., Ebrahimzadeh, I., Rabi, A., Saedipoor, B., & Jafarabadi, M. A. (2012). Impact of distance education via mobile phone text messaging on knowledge, attitude, practice and self efficacy of patients with type 2 diabetes mellitus in Iran. Journal of Diabetes and Metabolic Disorders, 11(1), 1–8.CrossRefGoogle Scholar
  24. 24.
    Piette, J. D., Mendoza-Avelares, M. O., Ganser, M., Mohamed, M., Marinec, N., & Krishnan, S. (2011). A preliminary study of a cloud-computing model for chronic illness self-care support in an underdeveloped country. American Journal of Preventive Medicine, 40(6), 629–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Shetty, A. S., Chamukuttan, S., Nanditha, A., Raj, R. K. C., & Ramachandran, A. (2011). Reinforcement of adherence to prescription recommendations in Asian Indian diabetes patients using short message service (SMS)—a pilot study. Journal of Association of Physicians of India, 59(11), 711–14.PubMedGoogle Scholar
  26. 26.
    Wong, C. K. H., Fung, C. S. C., Siu, S. C., Lo, Y. Y. C., Wong, K. W., Fong, D. Y. T., et al. (2013). A short message service (SMS) intervention to prevent diabetes in Chinese professional drivers with pre-diabetes: a pilot single-blinded randomized controlled trial. Diabetes Research and Clinical Practice, 102(3), 158–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Kulnawan, N. J. W., Suwanwalaikorn, S., Kittisopee, T., Meksawan, K., Thadpitakkul, N., & Mongkung, K. (2011). Development of diabetes telephone-linked care system for self-management support and acceptability test among type 2 diabetic patients. Journal of the Medical Association of Thailand, 94(10), 1189–97.PubMedGoogle Scholar
  28. 28.
    Agrawal A, Bhattacharya J, Baranwal N, Bhatla S, Dube S, Sardana V, et al. (2013). Integrating health care delivery and data collection in rural India using a rapidly deployable eHealth center. PLoS Medicine 2013;10(6).Google Scholar
  29. 29.
    Campos Neto CM, França FC, Nicolosi D, Moreira D, Akikubo R, Piegas LS, et al. (2007). Tele-ECG (tele-eletrocardiografia à distância via celular). Tele-ECG (tele-echocardiography by distance of cellular phone). pp 162–69.Google Scholar
  30. 30.
    Choi, B. G., Mukherjee, M., Dala, P., Young, H. A., Tracy, C. M., Katz, R. J., et al. (2011). Interpretation of remotely downloaded pocket-size cardiac ultrasound images on a web-enabled smartphone: validation against workstation evaluation. Journal of the American Society of Echocardiography, 24(12), 1325–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Eren, A., Subasi, A., & Coskun, O. (2008). A decision support system for telemedicine through the mobile telecommunications platform. Journal of Medical Systems, 32(1), 31–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia, K. M., & Perese, S. (2012). Can a handheld handle vascular? Contemplation of the vascular system in miniature. Journal of the American Society of Echocardiography, 25(8), 18A.PubMedCrossRefGoogle Scholar
  33. 33.
    Grancelli, H. O. (2007). Disease management programs in heart failure. Findings of the DIAL study. Revista Española de Cardiología, 60(Suppl 3), 15–22.PubMedGoogle Scholar
  34. 34.
    Kingue, S., Angandji, P., Menanga, A. P., Ashuntantang, G., Sobngwi, E., Dossou-Yovo, R. A., et al. (2013). Efficiency of an intervention package for arterial hypertension comprising telemanagement in a Cameroonian rural setting: the TELEMED-CAM study. The Pan African Medical Journal, 15, 153.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Yu, Y., Li, J., & Liu, J. (2013). M-HELP: a miniaturized total health examination system launched on a mobile phone platform. Telemedicine journal and e-health: the official journal of the American Telemedicine Association, 19(11), 857–65.CrossRefGoogle Scholar
  36. 36.
    Lua, P. L., & Neni, W. S. (2013). A randomised controlled trial of an SMS-based mobile epilepsy education system. Journal of Telemedicine and Telecare, 19(1), 23–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Leong, K. C., Chen, W. S., Leong, K. W., Mastura, I., Mimi, O., Sheikh, M. A., et al. (2006). The use of text messaging to improve attendance in primary care: a randomized controlled trial. Family Practice, 23(6), 699–705.PubMedCrossRefGoogle Scholar
  38. 38.
    Liew, S.-M., Tong, S. F., Mun Lee, V. K., Ng, C. J., Leong, K. C., & Teng, C. L. (2009). Text messaging reminders to reduce non-attendance in chronic disease follow-up: a clinical trial. British Journal of General Practice, 59(569), 916–20.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Khokhar, A. (2009). Short text messages (SMS) as a reminder system for making working women from Delhi breast aware. Asian Pacific journal of cancer prevention: APJCP, 10(2), 319–22.PubMedGoogle Scholar
  40. 40.
    Lua, P. L., & Neni, W. S. (2012). Feasibility and acceptability of mobile epilepsy educational system (MEES) for people with epilepsy in Malaysia. Telemedicine journal and e-health: the official journal of the American Telemedicine Association, 18(10), 777–84.CrossRefGoogle Scholar
  41. 41.
    Hung SH, Tseng HC, Tsai WH, Lin HH, Cheng JH, Chang YM (2007). COPD—endurance training via mobile phone. AMIA … Annual Symposium proceedings/AMIA Symposium. AMIA Symposium:985.Google Scholar
  42. 42.
    Mohammadzadeh, N., Safdari, R., & Rahimi, A. (2013). Cancer care management through a mobile phone health approach: key considerations. Asian Pacific journal of cancer prevention: APJCP, 14(9), 4961–4.PubMedCrossRefGoogle Scholar
  43. 43.
    US Department of Health and Human Services Food and Drug Administration (2013). Mobile medical applications: Guidance for Industry and Food and Drug Administration Staff: US Food and Drug Administration.Google Scholar
  44. 44.
    Praveen, D., Patel, A., McMahon, S., Prabhakaran, D., Clifford, G., Maulik, P., et al. (2013). A multifaceted strategy using mobile technology to assist rural primary healthcare doctors and frontline health workers in cardiovascular disease risk management: protocol for the SMARTHealth India cluster randomised controlled trial. Implementation Science, 8(1), 137.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David Peiris
    • 1
  • Devarsetty Praveen
    • 2
    • 3
  • Claire Johnson
    • 1
  • Kishor Mogulluru
    • 2
  1. 1.George Institute for Global HealthUniversity of SydneySydneyAustralia
  2. 2.George Institute for Global Health - IndiaNew DelhiIndia
  3. 3.Sydney Medical SchoolUniversity of SydneySydneyAustralia

Personalised recommendations