Sex Differences in Translocator Protein 18 kDa (TSPO) in the Heart: Implications for Imaging Myocardial Inflammation

  • DeLisa Fairweather
  • Michael J. Coronado
  • Amanda E. Garton
  • Jennifer L. Dziedzic
  • Adriana Bucek
  • Leslie T. CooperJr.
  • Jessica E. Brandt
  • Fatima S. Alikhan
  • Haofan Wang
  • Christopher J. Endres
  • Judy Choi
  • Martin G. Pomper
  • Tomás R. Guilarte
Article

Abstract

Myocarditis is more severe in men than in women and difficult to diagnose due to a lack of imaging modalities that directly detect myocardial inflammation. Translocator protein 18 kDa (TSPO) is used extensively to image brain inflammation due to its presence in CD11b+ brain microglia. In this study, we examined expression of TSPO and CD11b in mice with coxsackievirus B3 (CVB3) myocarditis and biopsy sections from myocarditis patients in order to determine if it could be used to image myocarditis. We found that male mice with CVB3 myocarditis upregulated more genes associated with TSPO activation than female mice. TSPO expression was increased in the heart of male mice and men with myocarditis compared with female subjects due to testosterone, where it was expressed predominantly in CD11b+ immune cells. We show that TSPO ligands detect myocardial inflammation using microSPECT, with increased uptake of [125I]-IodoDPA-713 in male mice with CVB3 myocarditis compared with undiseased controls.

Keywords

Myocarditis Sex differences Imaging Single-photon emission computed tomography TSPO CD11b 

Notes

Funding

This work was supported by National Institutes of Health (NIH) awards from the National Heart, Lung, and Blood Institute [grant numbers HL087033, HL111938] to D.F and M.J.C., an American Heart Association Grant-in-Aid [12GRNT12050000] to D.F., and a National Institute of Environmental Health Science (NIEHS) training grant [ES07141] to M.J.C. T.R.G. is supported by an NIH award from the NIEHS [ES07062].

Ethical Standard

Authors declare that the experiments in this manuscript comply with the current laws of the USA.

Conflict of Interest

The authors declare that they have no financial relationship with the funding organizations that sponsored the research. Authors have full control of the primary data and agree to allow the journal to review the data if requested.

References

  1. 1.
    Cooper, L. T., Jr. (2009). Myocarditis. New England Journal of Medicine, 9, 1526–1538.CrossRefGoogle Scholar
  2. 2.
    Schultheiss, H. P., Kuhl, U., & Cooper, L. T., Jr. (2011). The management of myocarditis. European Heart Journal, 32, 2616–2625.PubMedCrossRefGoogle Scholar
  3. 3.
    Friedrich, M. G., Sechtem, U., Schulz-Menger, J., Holmvang, G., Alakija, P., Cooper, L. T., White, J. A., Abdel-Aty, H., Gutberlet, M., Prasad, S., Aletras, A., Laissy, J. P., Paterson, I., Filipchuk, N. G., Kumar, A., Pauschinger, M., Liu, P., & International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. (2009). Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. Journal of the American College of Cardiology, 53, 1475–1487.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    El Amm, C., Fairweather, D., & Cooper, L. T., Jr. (2012). Pathogenesis and diagnosis of myocarditis. Heart, 98, 835–840.CrossRefGoogle Scholar
  5. 5.
    Papadopoulos, V., Baraldi, M., Guilarte, T. R., Knudsen, T. B., Lacapere, J. J., Lindemann, P., Norenberg, M. D., Nutt, D., Weizman, A., Zhang, M. R., & Gavish, M. (2006). Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends in Pharmacological Sciences, 27, 402–409.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, M. K., & Guilarte, T. R. (2008). Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacology & Therapeutics, 118, 1–17.CrossRefGoogle Scholar
  7. 7.
    Rupprecht, R., Papadopoulos, V., Rammes, G., Baghai, T. C., Fan, J., Akula, N., Groyer, G., Adams, D., & Schumacher, M. (2010). Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nature Reviews Drug Discovery, 9, 971–988.PubMedCrossRefGoogle Scholar
  8. 8.
    Rampani, A., Palazzo, C., de Candia, M., Lasorsa, F. M., & Trapani, G. (2013). Targeting of the translocator protein 18 kDa (TSPO): a valuable approach for nuclear and optical imaging of activated microglia. Bioconjugate Chemistry, 24, 1415–1428.CrossRefGoogle Scholar
  9. 9.
    Veenman, L., & Gavish, M. (2006). The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacology & Therapeutics, 110, 503–524.CrossRefGoogle Scholar
  10. 10.
    Batarseh, A., & Papadopoulos, V. (2010). Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Molecular and Cellular Endocrinology, 327, 1–12.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Endres, C. J., Coughlin, J. M., Gage, K. L., Watkins, C. C., Kassiou, M., & Pomper, M. G. (2012). Radiation dosimetry and biodistribution of the TSPO ligand 11C-DPA-713 in humans. Journal of Nuclear Medicine, 53, 330–335.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Miller, W. L. (2013). Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology, 379, 62–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Onyimba, J. A., Coronado, M. J., Garton, A. E., Kim, J. B., Bucek, A., Bedja, D., Gabrielson, K. L., Guilarte, T. R., & Fairweather, D. (2011). The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice. Biology of Sex Differences, 2, 2.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Surinkaew, S., Chattipakorn, S., & Chattipakorn, N. (2011). Roles of mitochondrial benzodiazepine receptor in the heart. Canadian Journal of Cardiology, 27, 262.e3–262.e13.CrossRefGoogle Scholar
  15. 15.
    Gaemperli, O., Shalhoub, J., Owen, D. R., Lamare, F., Johansson, S., Fouladi, N., Davies, A. H., Rimoldi, O. E., & Camici, P. G. (2012). Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. European Heart Journal, 33, 1902–1910.PubMedCrossRefGoogle Scholar
  16. 16.
    Versijpt, J., Dumont, F., Thierens, H., Jansen, H., DeVos, F., Slegers, G., Santens, P., Dierckx, R. A., & Korf, J. (2000). Biodistribution and dosimetry of [123I]iodo-PK 11195: a potential agent for SPECT imaging of the peripheral benzodiazepine receptor. European Journal of Nuclear Medicine, 27, 1326–1333.PubMedCrossRefGoogle Scholar
  17. 17.
    Debruyne, J. C., Versijpt, J., van Laere, K. J., De Vos, F., Keppens, J., Strijckmans, K., Achten, E., Slegers, G., Dierckx, R. A., Korf, J., & De Reuck, J. L. (2003). PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. European Journal of Neurology, 10, 257–264.PubMedCrossRefGoogle Scholar
  18. 18.
    Fujimura, Y., Hwang, P. M., Trout, H., III, Kozloff, L., Imaizumi, M., Innis, R. B., & Fujita, M. (2008). Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [3H]PK11195. Atherosclerosis, 201, 108–111.PubMedCrossRefGoogle Scholar
  19. 19.
    Pugliese, F., Gaemperli, O., Kinderlerer, A. R., Lamare, F., Ahalhoub, J., Davies, A. H., Rimoldi, O. E., Mason, J. C., & Camici, P. G. (2010). Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. Journal of the American College of Cardiology, 56, 653–661.PubMedCrossRefGoogle Scholar
  20. 20.
    Lamare, F., Hinz, R., Gaemperli, O., Pugliese, F., Mason, J. C., Spinks, T., Camici, P. G., & Rimoldi, O. E. (2011). Detection and quantification of large-vessel inflammation with 11C-R-PK11195 PET/CT. Journal of Nuclear Medicine, 52, 33–39.PubMedCrossRefGoogle Scholar
  21. 21.
    Coronado, M. J., Brandt, J. E., Kim, E., Bucek, A., Bedja, D., Abston, E. D., Shin, J., Gabrielson, K. L., Mitzner, W., & Fairweather, D. (2012). Testosterone and interleukin-1β increase cardiac remodeling during acute coxsackievirus B3 myocarditis via serpin A 3n. American Journal of Physiology - Heart and Circulatory Physiology, 302, H1726–H1736.PubMedCrossRefGoogle Scholar
  22. 22.
    Fairweather, D., Cooper, L. T., Jr., & Blauwet, L. A. (2013). Sex and gender differences in myocarditis and dilated cardiomyopathy. Current Problems in Cardiology, 38, 7–46.PubMedCrossRefGoogle Scholar
  23. 23.
    McNamara, D. M., Starling, R. C., Cooper, L. T., Boehmer, J. P., Mather, P. J., Janosko, K. M., Gorcsan, J., 3rd, Kip, K. E., Dec, G. W., & IMAC Investigators. (2011). Clinical and demographic predictors of outcomes in recent onset dilated cardiomyopathy: results of the IMAC (Intervention in Myocarditis and Acute Cardiomyopathy)-2 study. Journal of the American College of Cardiology, 58, 1112–1118.PubMedCrossRefGoogle Scholar
  24. 24.
    Frisancho-Kiss, S., Davis, S. E., Nyland, J. F., Frisancho, J. A., Cihakova, D., Rose, N. R., & Fairweather, D. (2007). Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. Journal of Immunology, 178, 6710–6714.Google Scholar
  25. 25.
    Frisancho-Kiss, S., Coronado, M. J., Frisancho, J. A., Lau, V. M., Rose, N. R., Klein, S. L., & Fairweather, D. (2009). Gonadectomy of male BALB/c mice increases Tim-3+ alternatively activated M2 macrophages, Tim-3+ T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain, Behavior, and Immunity, 23, 649–657.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Fairweather, D., & Rose, N. R. (2007). Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods, 41, 118–1122.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Myers, J. M., Fairweather, D., Huber, S. A., & Cunningham, M. W. (2013). Autoimmune myocarditis, valvulitis, and cardiomyopathy. Current Protocols in Immunology, Chapter 15: Unit 15.14:1-51.Google Scholar
  28. 28.
    Klein, S. L., Bird, B. H., & Glass, G. E. (2000). Sex differences in Seoul virus infection are not related to adult sex steroid concentrations in Norway rats. Journal of Virology, 74, 8213–8217.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Wang, H., Pullambhatla, M., Guilarte, T. R., Mease, R. C., & Pomper, M. G. (2009). Synthesis of [125I]iodoDPA-713: a new probe for imaging inflammation. Biochemical and Biophysical Research Communications, 389, 80–83.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Banerjee, S. R., Pullambhatia, M., Byun, Y., Nimmagadda, S., Foss, C. A., Green, G., Fox, J. J., Lupold, S. E., Mease, R. C., & Pomper, M. G. (2011). Sequential SPECT and optical imaging of experimental models of prostate cancer with a dual modality inhibitor of the prostate-specific membrane antigen. Angewandte Chemie International Edition in English, 50, 9167–9170.CrossRefGoogle Scholar
  31. 31.
    Cooper, L. T., Jr., & Fairweather, D. (2013). We only see what we look for: imaging cardiac inflammation. Circulation. Cardiovascular Imaging, 6, 165–166.PubMedCrossRefGoogle Scholar
  32. 32.
    Van Heeswijk, R. B., De Blois, J., Kania, G., Gonzales, C., Blyszczuk, P., Stuber, M., Eriksson, U., & Schwitter, J. (2013). Selective in vivo visualization of immune cell infiltration in a mouse model of autoimmune myocarditis by fluorine-19 cardiac magnetic resonance. Circulation. Cardiovascular Imaging, 6, 277–284.PubMedCrossRefGoogle Scholar
  33. 33.
    Yuan, Y., Li, P., & Ye, J. (2012). Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein & Cell, 3, 173–181.CrossRefGoogle Scholar
  34. 34.
    Endres, C. J., Pomper, M. G., James, M., Uzuner, O., Hamoud, D. A., Watkins, C. C., Reynolds, A., Hilton, J., Dannals, R. F., & Kassiou, M. (2009). Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. Journal of Nuclear Medicine, 50, 1276–1282.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kumar, A., Muzik, O., Shandal, V., Chugani, D., Chakraborty, P., & Chugani, H. T. (2012). Evaluation of age-related changes in translocator protein (TSPO) in human brain using (11)C-[R]-PK11195 PET. Journal of Neuroinflammation, 9, 232.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Suwijn, S. R., de Bruin, K., de Bie, R. N., & Booij, J. (2014). The role of SPECT imaging of the dopaminergic system in translational research on Parkinson’s disease. Parkinsonism & Related Disorders, 20S1, S184–S186.CrossRefGoogle Scholar
  37. 37.
    Kipp, M., Berger, K., Clarner, T., Dang, J., & Beyer, C. (2012). Sex steroids control neuroinflammatory processes in the brain: relevance for acute ischaemia and degenerative demyelination. Journal of Neuroendocrinology, 24, 62–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Papadopoulos, V., Amri, H., Boujrad, N., Cascio, C., Culty, M., Garnier, M., Hardwick, M., Li, H., Vidic, B., Brown, A. S., Reversa, J. L., Bernassau, J. M., & Drieu, K. (1997). Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids, 62, 21–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Lacapere, J.-J., & Papadopoulos, V. (2003). Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids, 68, 569–585.PubMedCrossRefGoogle Scholar
  40. 40.
    Canat, X., Guillaumont, A., Bauaboula, M., Poinot-Chazel, C., Drocq, J. M., Carayon, P., LeFur, G., & Casellas, P. (1993). Peripheral benzodiazepine receptor modulation with phagocyte differentiation. Biochemical Pharmacology, 46, 551–554.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi, J., Ifuku, M., Noda, M., & Guilarte, T. R. (2011). Translocator protein (18 kDa)/peripheral benzodiazepine receptor specific ligands induce microglia functions consistent with an activated state. Glia, 59, 219–230.PubMedCrossRefGoogle Scholar
  42. 42.
    Cahard, D., Canat, X., Caryon, P., Roque, C., Casellas, P., & Le Fur, G. (1994). Subcellular localization of peripheral benzodiazepine receptors on human leukocytes. Laboratory Investigation, 70, 23–28.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • DeLisa Fairweather
    • 1
    • 5
  • Michael J. Coronado
    • 1
  • Amanda E. Garton
    • 1
  • Jennifer L. Dziedzic
    • 2
  • Adriana Bucek
    • 1
  • Leslie T. CooperJr.
    • 3
  • Jessica E. Brandt
    • 1
  • Fatima S. Alikhan
    • 2
  • Haofan Wang
    • 4
  • Christopher J. Endres
    • 4
  • Judy Choi
    • 2
  • Martin G. Pomper
    • 4
  • Tomás R. Guilarte
    • 2
    • 6
  1. 1.Johns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Mailman School of Public HealthColumbia UniversityNew YorkUSA
  3. 3.Mayo ClinicRochesterUSA
  4. 4.Johns Hopkins School of MedicineBaltimoreUSA
  5. 5.Department of Environmental Health SciencesJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  6. 6.Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkUSA

Personalised recommendations