Targeting Inflammation: Impact on Atherothrombosis

  • Maria Giulia Marini
  • Chiara Sonnino
  • Marco Previtero
  • Luigi M. Biasucci


Atherothrombosis is a worldwide epidemic accounting for an unacceptable toll of deaths and disabilities. Its pathophysiology is complex and hardly referable to a specific mechanism; however, in the last 20 years, a growing amount of evidence has demonstrated that inflammatory processes play a major role from the very beginning to the ultimate complication of atherothrombosis. These evidences are addressing a growing interest toward anti-inflammatory agents as preventive or curative treatments of atherothrombosis. At present, accumulated data are not conclusive, but strong evidence exists in favor of an anti-inflammatory positive effect for several drugs as statins or renin–angiotensin inhibitors. More conclusive data are expected from ongoing trials directly exploring the role of specific cytokines antagonists.


Inflammation Atherothrombosis Acute coronary syndrome Anti-inflammatory drugs 


  1. 1.
    Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2095–2128. doi:10.1016/S0140-6736(12)61728-0.PubMedGoogle Scholar
  2. 2.
    Libby, P. (2012). Inflammation in atherosclerosis. Atherosclerosis Thrombosis Vascular Biology, 32(9), 2045–2051. doi:10.1161/ATVBAHA.108.179705.Google Scholar
  3. 3.
    Jonasson, L., Holm, J., Skalli, O., Bondjers, G., & Hansson, G. K. (1986). Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis, 6(2), 131–138.PubMedGoogle Scholar
  4. 4.
    Woollard, K. J., & Geissmann, F. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7(2), 77–86. doi:10.1038/nrcardio.2009.228.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Wyss, C. A., Neidhart, M., Altwegg, L., Spanaus, K. S., Yonekawa, K., Wischnewsky, M. B., et al. (2010). Cellular actors, toll-like receptors, and local cytokine profile in acute coronary syndromes. European Heart Journal, 31, 1457–1469. doi:10.1093/eurheartj/ehq084.PubMedGoogle Scholar
  6. 6.
    Yonekawa, K., Neidhart, M., Altwegg, L. A., Wyss, C. A., Corti, R., Vogl, T., et al. (2011). Myeloid related proteins activate toll-like receptor 4 in human acute coronary syndromes. Atherosclerosis, 218(2), 486–492. doi:10.1016/j.atherosclerosis.2011.06.020.PubMedGoogle Scholar
  7. 7.
    Niessner, A., Shin, M. S., Pryshchep, O., Goronzy, J. J., Chaikof, E. L., & Weyand, C. M. (2007). Synergistic proinflammatory effects of the antiviral cytokine interferon-alpha and Toll-like receptor 4 ligands in the atherosclerotic plaque. Circulation, 116(18), 2043–2052.PubMedGoogle Scholar
  8. 8.
    Libby, P., & Ridker, P. M. (2009). Hansson GK; Leducq Transatlantic Network on Atherothrombosis: Inflammation in atherosclerosis: from pathophysiology to practice J. American College of Cardiology, 54(23), 2129–2138. doi:10.1016/j.jacc.2009.09.009.Google Scholar
  9. 9.
    Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine, 352(16), 1685–1695.PubMedGoogle Scholar
  10. 10.
    Narducci, M. L., Grasselli, A., Biasucci, L. M., Farsetti, A., Mulè, A., Liuzzo, G., et al. (2007). High telomerase activity in neutrophils from unstable coronary plaques. Journal of the American College of Cardiology, 50(25), 2369–2374.PubMedGoogle Scholar
  11. 11.
    Biasucci, L. M., Liuzzo, G., Giubilato, S., Della Bona, R., Leo, M., Pinnelli, M., et al. (2009). Delayed neutrophil apoptosis in patients with unstable angina: relation to C-reactive protein and recurrence of instability. European Heart Journal, 30(18), 2220–2225. doi:10.1093/eurheartj/ehp248.PubMedGoogle Scholar
  12. 12.
    Freedman, J. E., Larson, M. G., Tanriverdi, K., O'Donnell, C. J., Morin, K., Hakanson, A. S., et al. (2010). Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation, 122(2), 119–129. doi:10.1161/CIRCULATIONAHA.109.928192.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Zal, B., Kaski, J. C., Arno, G., Akiyu, J. P., Xu, Q., Cole, D., et al. (2004). Heat-shock protein 60-reactive CD4 + CD28null T cells in patients with acute coronary syndromes. Circulation, 109(10), 1230–1235.PubMedGoogle Scholar
  14. 14.
    Nakajima, H., Kobayashi, J., Bando, K., Niwaya, K., Tagusari, O., Sasako, Y., et al. (2002). The effect of cryo-maze procedure on early and intermediate term outcome in mitral valve disease: case matched study. Circulation, 106(12 Suppl 1), I46–I50.PubMedGoogle Scholar
  15. 15.
    Libby, P. (2009). Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. Journal of Lipid Research, 50(Suppl), S352–S357. doi:10.1194/jlr.R800099-JLR200.PubMedGoogle Scholar
  16. 16.
    Liuzzo, G., Biasucci, L. M., Trotta, G., Brugaletta, S., Pinnelli, M., Digianuario, G., et al. (2007). Unusual CD4 + CD28null T lymphocytes and recurrence of acute coronary events. Journal of the American College of Cardiology, 50(15), 1450–1458.PubMedGoogle Scholar
  17. 17.
    Miossec, P., Korn, T., & Kuchroo, V. K. (2009). Interleukin-17 and type 17 helper T cells. The New England Journal of Medicine, 361(9), 888–898. doi:10.1056/NEJMra0707449.PubMedGoogle Scholar
  18. 18.
    Chen, S., Crother, T. R., & Arditi, M. (2010). Emerging role of IL-17 in atherosclerosis. Journal of Innate Immunity, 2(4), 325–333. doi:10.1159/000314626.PubMedGoogle Scholar
  19. 19.
    Brusko, T. M., Putnam, A. L., & Bluestone, J. A. (2008). Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunological Reviews, 223, 371–390. doi:10.1111/j.1600-065X.2008.00637.x.PubMedGoogle Scholar
  20. 20.
    Mor, A., Luboshits, G., Planer, D., Keren, G., & George, J. (2006). Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. European Heart Journal, 27(21), 2530–2537.PubMedGoogle Scholar
  21. 21.
    Han, S. F., Liu, P., Zhang, W., Bu, L., Shen, M., Li, H., et al. (2007). The opposite-direction modulation of CD4 + CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clinical Immunology, 124(1), 90–97.PubMedGoogle Scholar
  22. 22.
    Liuzzo, G., Goronzy, J. J., Yang, H., Kopecky, S. L., Holmes, D. R., Frye, R. L., et al. (2000). Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation, 101(25), 2883–2888.PubMedGoogle Scholar
  23. 23.
    De Palma, R., Del Galdo, F., Abbate, G., Chiariello, M., Calabró, R., Forte, L., et al. (2006). Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation, 113(5), 640–646.PubMedGoogle Scholar
  24. 24.
    Vigushin, D. M., Pepys, M. B., & Hawkins, P. N. (1993). Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation, 91(4), 1351–1357.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Biasucci, L. M. (2004). CDC; AHA: Clinical use of inflammatory markers in patients with cardiovascular diseases: a background paper. CDC/AHA workshop on markers of inflammation and cardiovascular disease: application to clinical and public health practice. Circulation, 110(25), e560–e567.PubMedGoogle Scholar
  26. 26.
    Biasucci, L.M, Koenig, W., Mair, J., Mueller, C., Plebani, M., Lindahl, B., Rifai, N., Venge, P., Hamm, C., Giannitsis, E., Huber, K., Galvani, M., Tubaro, M., Collinson, P., Alpert, J.S., Hasin, Y., Katus, H., Jaffe, A.S., Thygesen, K. (2013). the Study Group on Biomarkers in Cardiology of the Acute Cardiovascular Care Association of the European Society of Cardiology. European Heart Journal, in pressGoogle Scholar
  27. 27.
    Liuzzo, G., Biasucci, L. M., Gallimore, J. R., Grillo, R. L., Rebuzzi, A. G., Pepys, M. B., et al. (1994). The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. The New England Journal of Medicine, 331(7), 417–422.PubMedGoogle Scholar
  28. 28.
    Biasucci, L. M., Liuzzo, G., Grillo, R. L., Caligiuri, G., Rebuzzi, A. G., Buffon, A., et al. (1999). Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation, 99(7), 855–860.PubMedGoogle Scholar
  29. 29.
    Kuller, L. H., Tracy, R. P., Shaten, J., & Meilahn, E. N. (1996). Relation of C-reactive protein and coronary heart disease in the MRFIT nested case–control study. Multiple risk factor intervention trial. American Journal of Epidemiology, 144(6), 537–547.PubMedGoogle Scholar
  30. 30.
    Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., & Hennekens, C. H. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. The New England Journal of Medicine, 336(14), 973–979.PubMedGoogle Scholar
  31. 31.
    Kaptoge, S., Di Angelantonio, E., Lowe, G., Pepys, M. B., Thompson, S. G., Collins, R., et al. (2010). C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet, 375(9709), 132–140. doi:10.1016/S0140-6736(09)61717-7.PubMedGoogle Scholar
  32. 32.
    Patrono, C., García Rodríguez, L. A., Landolfi, R., & Baigent, C. (2005). Low-dose aspirin for the prevention of atherothrombosis. The New England Journal of Medicine, 353(22), 2373–2383.PubMedGoogle Scholar
  33. 33.
    Larsen, S. B., Grove, E. L., Kristensen, S. D., & Hvas, A. M. (2013). Reduced antiplatelet effect of aspirin is associated with low-grade inflammation in patients with coronary artery disease. Thrombosis and Haemostasis, 109(5), 920–929. doi:10.1160/TH12-09-0666.PubMedGoogle Scholar
  34. 34.
    Yuan, Z., Shioji, K., Kihara, Y., Takenaka, H., Onozawa, Y., & Kishimoto, C. (2004). Cardioprotective effects of carvedilol on acute autoimmune myocarditis: anti-inflammatory effects associated with antioxidant property. American Journal of Physiology - Heart and Circulatory Physiology, 286(1), H83–H90.PubMedGoogle Scholar
  35. 35.
    Wolf, S. C., Sauter, G., Preyer, M., Poerner, T., Kempf, V. A., Risler, T., et al. (2007). Influence of nebivolol and metoprolol on inflammatory mediators in human coronary endothelial or smooth muscle cells. Effects on neointima formation after balloon denudation in carotid arteries of rats treated with nebivolol. Cell Physiology Biochemistry, 19(1–4), 129–136.Google Scholar
  36. 36.
    Biasucci, L. M., Lombardi, M., Piro, M., Di Giannuario, G., Liuzzo, G., & Crea, F. (2005). Irbesartan significantly reduces C reactive protein concentrations after 1 month of treatment in unstable angina. Heart, 91(5), 670–671.PubMedGoogle Scholar
  37. 37.
    Destro, M., Cagnoni, F., Dognini, G. P., Galimberti, V., Taietti, C., Cavalleri, C., et al. (2011). Telmisartan: just an antihypertensive agent? A literature review. Expert Opinion on Pharmacotherapy, 12(17), 2719–2735. doi:10.1517/14656566.2011.632367.PubMedGoogle Scholar
  38. 38.
    Porto, I., Di Vito, L., De Maria, G. L., Dato, I., Tritarelli, A., Leone, A. M., et al. (2009). Comparison of the effects of ramipril versus telmisartan on high-sensitivity C-reactive protein and endothelial progenitor cells after acute coronary syndrome. The American Journal of Cardiology, 103(11), 1500–1505. doi:10.1016/j.amjcard.2009.01.370.PubMedGoogle Scholar
  39. 39.
    Lopez Santi, R. G., Valeff, E. C., Duymovich, C. R., Mazziotta, D., Mijailovsky, N. E., Filippa, G. C., et al. (2005). Etchegoyen MC; PROCORDIS investigators: Effects of an angiotensin-converting enzyme inhibitor: (ramipril) on inflammatory markers in secondary prevention patients: RAICES Study. Coronary Artery Disease, 16(7), 423–429.PubMedGoogle Scholar
  40. 40.
    Verma, S., Lonn, E. M., Nanji, A., Browne, K., Ward, R., Robertson, A., et al. (2009). Effect of angiotensin-converting enzyme inhibition on C-reactive protein levels: the ramipril C-reactive protein randomized evaluation: (4R) trial results. The Canadian Journal of Cardiology, 25(7), e236–e240.PubMedGoogle Scholar
  41. 41.
    Vicenová, B., Vopálenskẏ, V., Burẏsek, L., & Pospísek, M. (2009). Emerging role of interleukin-1 in cardiovascular diseases. Physiological Research, 58, 481–498.PubMedGoogle Scholar
  42. 42.
    Merhi-Soussi, F., Kwak, B. R., Magne, D., et al. (2005). Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovascular Research, 66(3), 583–593.PubMedGoogle Scholar
  43. 43.
    Isoda, K., Sawada, S., Ishigami, N., et al. (2004). Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(6), 1068–1073.PubMedGoogle Scholar
  44. 44.
    Bujak, M., & Frangogiannis, N. G. (2009). The role of IL-1 in the pathogenesis of heart disease. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57(3), 165–176. doi:10.1007/s00005-009-0024-y.Google Scholar
  45. 45.
    Kaplanski, G., Porat, R., Aiura, K., Erban, J. K., Gelfand, J. A., & Dinarello, C. A. (1993). Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood, 81(10), 2492–2495.PubMedGoogle Scholar
  46. 46.
    Fearon, W. F., & Fearon, D. T. (2008). Inflammation and cardiovascular disease: role of the interleukin-1 receptor antagonist. Circulation, 117(20), 2577–2579. doi:10.1161/CIRCULATIONAHA.108.772491.PubMedGoogle Scholar
  47. 47.
    Abbate, A., Salloum, F. N., Vecile, E., Das, A., Hoke, N. N., Straino, S., et al. (2008). Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 117(20), 2670–2683. doi:10.1161/CIRCULATIONAHA.107.740233.PubMedGoogle Scholar
  48. 48.
    Abbate, A., Kontos, M. C., Grizzard, J. D., Biondi-Zoccai, G. G., Van Tassell, B. W., Robati, R., et al. (2010). VCU-ART Investigators: Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). American Journal of Cardiology, 105(10), 1371–1377.e1. doi:10.1016/j.amjcard.2009.12.059.PubMedGoogle Scholar
  49. 49.
    Ridker, P. M., Thuren, T., Zalewski, A., & Libby, P. (2011). Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab anti-inflammatory Thrombosis Outcomes Study (CANTOS). American Heart Journal, 162(4), 597–605. doi:10.1016/j.ahj.2011.06.012.PubMedGoogle Scholar
  50. 50.
    Pasceri, V., & Yeh, E. T. (1999). A tale of two diseases: atherosclerosis and rheumatoid arthritis. Circulation, 100(21), 2124–2126.PubMedGoogle Scholar
  51. 51.
    Walsh, L. J., Trinchieri, G., Waldorf, H. A., Whitaker, D., & Murphy, G. F. (1991). Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 88(10), 4220–4224.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Liuzzo, G., Kopecky, S. L., Frye, R. L., O'Fallon, W. M., Maseri, A., Goronzy, J. J., et al. (1999). Perturbation of the T-cell repertoire in patients with unstable angina. Circulation, 100(21), 2135–2139.PubMedGoogle Scholar
  53. 53.
    Schmidt, D., Goronzy, J. J., & Weyand, C. M. (1996). CD4+ CD7–CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. The Journal of Clinical Investigation, 97(9), 2027–2037.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Rizzello, V., Liuzzo, G., Brugaletta, S., Rebuzzi, A., Biasucci, L. M., & Crea, F. (2006). Modulation of CD4(+)CD28null T lymphocytes by tumor necrosis factor-alpha blockade in patients with unstable angina. Circulation, 113(19), 2272–2277.PubMedGoogle Scholar
  55. 55.
    Chung, E. S., Packer, M., Lo, K. H., & Fasanmade, A. A. (2003). Willerson JT; Anti-TNF Therapy Against Congestive Heart Failure Investigators: Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation, 107(25), 3133–3140.PubMedGoogle Scholar
  56. 56.
    Ridker, P. M. (2009). Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). Journal of Thrombosis and Haemostasis, 7(Suppl 1), 332–339. doi:10.1111/j.1538-7836.2009.03404.x.PubMedGoogle Scholar
  57. 57.
    Elango, T., Dayalan, H., Subramanian, S., Gnanaraj, P., & Malligarjunan, H. (2012). Serum interleukin-6 levels in response to methotrexate treatment in psoriatic patients. Clinica Chimica Acta, 413(19–20), 1652–1656. doi:10.1016/j.cca.2012.05.007.Google Scholar
  58. 58.
    Gerards, A. H., de Lathouder, S., de Groot, E. R., Dijkmans, B. A., & Aarden, L. A. (2003). Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology (Oxford), 42(10), 1189–1196.Google Scholar
  59. 59.
    Ridker, P. M. (2013). Moving beyond JUPITER: will inhibiting inflammation reduce vascular event rates? Current Atherosclerosis Reports, 15(1), 295. doi:10.1007/s11883-012-0295-3.PubMedGoogle Scholar
  60. 60.
    Coomes, E., Chan, E. S., & Reiss, A. B. (2011). Methotrexate in atherogenesis and cholesterol metabolism. Cholesterol. doi:10.1155/2011/503028. 503028.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Reiss, A. B., Carsons, S. E., Anwar, K., Rao, S., Edelman, S. D., Zhang, H., et al. (2008). Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Arthritis and Rheumatism, 58(12), 3675–3683. doi:10.1002/art.24040.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Bulgarelli, A., Martins Dias, A. A., Caramelli, B., & Maranhao, R. C. (2012). Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. Journal of Cardiovascular Pharmacology, 59(4), 308–314. doi:10.1097/FJC.0b013e318241c385.PubMedGoogle Scholar
  63. 63.
    Micha, R., & Imamura, F. (2011). Wyler von Ballmoos M, Solomon DH, Hernán MA, Ridker PM, Mozaffarian D: Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. The American Journal of Cardiology, 108(9), 1362–1370. doi:10.1016/j.amjcard.2011.06.054.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Abbate, A., Santini, D., Biondi-Zoccai, G. G., Scarpa, S., Vasaturo, F., Liuzzo, G., et al. (2004). Cyclo-oxygenase-2 (COX-2) expression at the site of recent myocardial infarction: friend or foe? Heart, 90(4), 440–443.PubMedGoogle Scholar
  65. 65.
    Baker, C. S., Hall, R. J., Evans, T. J., et al. (1999). Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(3), 646–655.PubMedGoogle Scholar
  66. 66.
    Schönbeck, U., Sukhova, G. K., Graber, P., Coulter, S., & Libby, P. (1999). Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. The American Journal of Pathology, 155(4), 1281–1291.PubMedGoogle Scholar
  67. 67.
    Willoughby, D. A., Moore, A. R., & Colville-Nash, P. R. (2000). COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease. Lancet, 355(9204), 646–648.PubMedGoogle Scholar
  68. 68.
    Saito, T., Rodger, I. W., Hu, F., Shennib, H., & Giaid, A. (2000). Inhibition of cyclooxygenase-2 improves cardiac function in myocardial infarction. Biochemical and Biophysical Research Communications, 273(2), 772–775.PubMedGoogle Scholar
  69. 69.
    Abbate, A., Limana, F., Capogrossi, M. C., Santini, D., Biondi-Zoccai, G. G., Scarpa, S., et al. (2006). Cyclo-oxygenase-2 (COX-2) inhibition reduces apoptosis in acute myocardial infarction. Apoptosis, 11(6), 1061–1063.PubMedGoogle Scholar
  70. 70.
    Bombardier, C., Laine, L., Reicin, A., et al. (2000). VIGOR Study Group: Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. New England Journal of Medicine, 343(21), 1520–1528. 2 pp following 1528.PubMedGoogle Scholar
  71. 71.
    Bresalier, R. S., Sandler, R. S., Quan, H., et al. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.PubMedGoogle Scholar
  72. 72.
    Farmer, J. A. (2000). Pleiotropic effects of statins. Current Atherosclerosis Reports, 2(3), 208–217.PubMedGoogle Scholar
  73. 73.
    Heart Protection Study Collaborative Group. (2002). MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet, 360(9326), 7–22.Google Scholar
  74. 74.
    Amarenco, P., Bogousslavsky, J., Callahan, A., 3rd, Goldstein, L. B., Hennerici, M., Rudolph, A. E., et al. (2006). Zivin JA; Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators: High-dose atorvastatin after stroke or transient ischemic attack. The New England Journal of Medicine, 355(6), 549–559.PubMedGoogle Scholar
  75. 75.
    Shahar, E., Chambless, L. E., Rosamond, W. D., Boland, L. L., Ballantyne, C. M., & McGovern, P. G. (2003). Sharrett AR; Atherosclerosis Risk in Communities Study: Plasma lipid profile and incident ischemic stroke. Stroke, 34(3), 623–631.PubMedGoogle Scholar
  76. 76.
    Brugaletta, S., Biasucci, L. M., Pinnelli, M., Biondi-Zoccai, G., Di Giannuario, G., Trotta, G., et al. (2006). Novel anti-inflammatory effect of statins: reduction of CD4 + CD28null T lymphocyte frequency in patients with unstable angina. Heart, 92(2), 249–250.PubMedGoogle Scholar
  77. 77.
    Lijnen, P., Echevaria-Vazquez, D., & Petrov, V. (1996). Influence of cholesterol lowering on plasma membrane lipids and function. Methods and Findings in Experimental and Clinical Pharmacology, 18(2), 123–136.PubMedGoogle Scholar
  78. 78.
    Ridker, P. M., Rifai, N., Pfeffer, M. A., Sacks, F. M., Moye, L. A., Goldman, S., et al. (1998). Braunwald E; Cholesterol and Recurrent Events (CARE) Investigators: Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation, 98(9), 839–844.PubMedGoogle Scholar
  79. 79.
    Patel, M.J., Blazing, M.A. (2013) Inflammation and atherosclerosis: disease modulating therapies. Current Treat Options Cardiovascular Medicine. 15(6):681–695.Google Scholar
  80. 80.
    Ridker, P. M., Rifai, N., Clearfield, M., Downs, J. R., Weis, S. E., Miles, J. S., et al. (2001). Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators: Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. The New England Journal of Medicine, 344(26), 1959–1965.PubMedGoogle Scholar
  81. 81.
    Ridker, P. M., Cannon, C. P., Morrow, D., Rifai, N., Rose, L. M., McCabe, C. H., et al. (2005). Braunwald E; Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators: Pravastatin or atorvastatin evaluation and infection therapy: C-reactive protein levels and outcomes after statin therapy. The New England Journal of Medicine, 352(1), 20–28.PubMedGoogle Scholar
  82. 82.
    Nissen, S. E., Tuzcu, E. M., Schoenhagen, P., Crowe, T., Sasiela, W. J., Tsai, J., et al. (2005). Ganz P; Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) Investigators: Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. The New England Journal of Medicine, 352(1), 29–38.PubMedGoogle Scholar
  83. 83.
    Albert, M. A., Danielson, E., & Rifai, N. (2001). Ridker PM; PRINCE Investigators: Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA, 286(1), 64–70.PubMedGoogle Scholar
  84. 84.
    Ridker, P. M., & JUPITER Study Group. (2003). Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: rationale and design of the JUPITER trial. Circulation, 108(19), 2292–2297.PubMedGoogle Scholar
  85. 85.
    Yousuf, O., Mohanty, B. D., Martin, S. S., Joshi, P. H., Blaha, M. J., Nasir, K., et al. (2013). High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link. Journal of the American College of Cardiology, 62(5), 397–408. doi:10.1016/j.jacc.2013.05.016.PubMedGoogle Scholar
  86. 86.
    Kaul, S., Morrissey, R. P., & Diamond, G. A. (2010). By Jove! What is a clinician to make of JUPITER? Arch. Internal Medicine, 170(12), 1073–1077. doi:10.1001/archinternmed.2010.189.Google Scholar
  87. 87.
    Ridker, P. M., & Glynn, R. J. (2010). The JUPITER trial: responding to the critics. The American Journal of Cardiology, 106(9), 1351–1356. doi:10.1016/j.amjcard.2010.08.025.PubMedGoogle Scholar
  88. 88.
    Chu, A. Y., Guilianini, F., Barratt, B. J., Nyberg, F., Chasman, D. I., & Ridker, P. M. (2012). Pharmacogenetic determinants of statin-induced reduction in C-reactive protein. Circulation Cardiovascular Genetics, 5(1), 58–65. doi:10.1161/CIRCGENETICS.111.961847.PubMedGoogle Scholar
  89. 89.
    Chasman, D. I., Guilianini, F., MacFadyen, J., Barratt, B. J., Nyberg, F., Ridker, P. M., et al. (2012). Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction. The justificaton for the use of statins in prevention: an intervention trial evalauting rosuvastatin (JUPITER) trial. Circulation Cardiovascular Genetics, 5, 257–264. doi:10.1161/CIRCGENETICS.111.961144.PubMedGoogle Scholar
  90. 90.
    Burke, J. E., & Dennis, E. A. (2009). Phospholipase A2 biochemistry. Cardiovascular Drugs and Therapy, 23(1), 49–59. doi:10.1007/s10557-008-6132-9.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Rosenson, R. S. (2009). Future role for selective phospholipase A2 inhibitors in the prevention of atherosclerotic cardiovascular disease. Cardiovascular Drugs and Therapy, 23(1), 93–101. doi:10.1007/s10557-008-6148-1.PubMedGoogle Scholar
  92. 92.
    White, H., Held, C., Stewart, R., Watson, D., Harrington, R., Budaj, A., et al. (2010). Study design and rationale for the clinical outcomes of the STABILITY trial (STabilization of Atherosclerotic plaque By Initiation of darapLadIb TherapY) comparing darapladib vs. placebo in patients with coronary heart disease. American Heart Journal, 160(4), 655–661. doi:10.1016/j.ahj.2010.07.006.PubMedGoogle Scholar
  93. 93.
    O’Donoghue, M. L., Braunwald, E., White, H. D., Serruys, P., Steg, P. G., Hochman, J., et al. (2011). Study design and rationale for the Stabilization Of pLaques usIng Darapladib—Thrombolysis in Myocardial Infarction (SOLID-TIMI 52) trial in patients after an acute coronary syndrome. American Heart Journal, 162(4), 613–619.e1. doi:10.1016/j.ahj.2011.07.018.PubMedGoogle Scholar
  94. 94.
    García-García, H. M., Klauss, V., Gonzalo, N., Garg, S., Onuma, Y., Hamm, C. W., et al. (2012). Relationship between cardiovascular risk factors and biomarkers with necrotic core and atheroma size: a serial intravascular ultrasound radiofrequency data analysis. The International Journal of Cardiovascular Imaging, 28(4), 695–703. doi:10.1007/s10554-011-9882-6.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Nicholls, S. J., Cavender, M. A., Kastelein, J. J., Schwartz, G., Waters, D. D., Rosenson, R. S., et al. (2012). Inhibition of secretory phospholipase A(2) in patients with acute coronary syndromes: rationale and design of the vascular inflammation suppression to treat acute coronary syndrome for 16 weeks (VISTA-16) trial. Cardiovascular Drugs and Therapy, 26(1), 71–75. doi:10.1007/s10557-011-6358-9.PubMedGoogle Scholar
  96. 96.
    Epstein, S. E., Zhu, J., Najafi, A. H., & Burnett, M. S. (2009). Insights into the role of infection in atherogenesis and in plaque rupture. Circulation, 119(24), 3133–3141. doi:10.1161/CIRCULATIONAHA.109.849455.PubMedGoogle Scholar
  97. 97.
    Biasucci, L. M., Liuzzo, G., Ciervo, A., et al. (2003). Antibody response to chlamydial heat shock protein 60 is strongly associated with acute coronary syndromes. Circulation, 107(24), 3015–3017.PubMedGoogle Scholar
  98. 98.
    Liuzzo, G., Ciervo, A., Niccoli, G., et al. (2011). Chlamydia pneumoniae in coronary atherosclerotic plaques and coronary instability. International Journal of Cardiology, 147(1), 176–178. doi:10.1016/j.ijcard.2010.12.029.PubMedGoogle Scholar
  99. 99.
    Rosenfeld, M. E., & Campbell, L. A. (2011). Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thrombosis and Haemostasis, 106(5), 858–867. doi:10.1160/TH11-06-0392.PubMedGoogle Scholar
  100. 100.
    Grayston, J. T. (2003). Antibiotic treatment of atherosclerotic cardiovascular disease. Circulation, 107(9), 1228–1230.PubMedGoogle Scholar
  101. 101.
    O'Connor, C. M., et al. (2003). Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. Journal of the American Medical Association, 290(11), 1459–1466.PubMedGoogle Scholar
  102. 102.
    Grayston, J. T., et al. (2005). Azithromycin for the secondary prevention of coronary events. The New England Journal of Medicine, 352(16), 1637–1645.PubMedGoogle Scholar
  103. 103.
    Cannon, C. P., et al. (2005). Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. The New England Journal of Medicine, 352(16), 1646–1654.PubMedGoogle Scholar
  104. 104.
    Jespersen, C. M., et al. (2006). Randomised placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. British Medical Journal, 332(7532), 22–27.PubMedGoogle Scholar
  105. 105.
    Danesh, J. (2005). Antibiotics in the prevention of heart attacks. Lancet, 365(9457), 365–367.PubMedGoogle Scholar
  106. 106.
    Caroli, A., Cardillo, M. T., Galea, R., & Biasucci, L. M. (2013). Potential therapeutic role of microRNAs in ischemic heart disease. Journal of Cardiology, 61(5), 315–320. doi:10.1016/j.jjcc.2013.01.012.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria Giulia Marini
    • 1
  • Chiara Sonnino
    • 1
  • Marco Previtero
    • 1
  • Luigi M. Biasucci
    • 1
  1. 1.Institute of CardiologyCatholic UniversityRomeItaly

Personalised recommendations