Journal of Cardiovascular Translational Research

, Volume 6, Issue 6, pp 931–944

Transcriptional Network Analysis for the Regulation of Left Ventricular Hypertrophy and Microvascular Remodeling

  • Aida Moreno-Moral
  • Massimiliano Mancini
  • Giulia D’Amati
  • Paolo Camici
  • Enrico Petretto
Article

Abstract

Hypertension and cardiomyopathies share maladaptive changes of cardiac morphology, eventually leading to heart failure. These include left ventricular hypertrophy (LVH), myocardial fibrosis, and structural remodeling of coronary microcirculation, which is the morphologic hallmark of coronary microvascular dysfunction. To pinpoint the complex molecular mechanisms and pathways underlying LVH-associated cardiac remodeling independent of blood pressure effects, we employed gene network approaches to the rat heart. We used the Spontaneously Hypertensive Rat model showing many features of human hypertensive cardiomyopathy, for which we collected histological and histomorphometric data of the heart and coronary vasculature, and genome-wide cardiac gene expression. Here, we provide a large catalogue of gene co-expression networks in the heart that are significantly associated with quantitative variation in LVH, microvascular remodeling, and fibrosis-related traits. Many of these networks were significantly conserved to human idiopathic and/or ischemic cardiomyopathy patients, suggesting a potential role for these co-expressed genes in human heart disease.

Keywords

Gene regulatory networks Left ventricular hypertrophy Cardiac fibrosis Coronary microvascular remodeling Spontaneously Hypertensive Rat (SHR) 

Supplementary material

12265_2013_9504_MOESM1_ESM.xlsx (721 kb)
Online Resource 1(XLSX 720 kb)
12265_2013_9504_MOESM2_ESM.xlsx (77 kb)
Online Resource 2(XLSX 76 kb)
12265_2013_9504_MOESM3_ESM.pdf (108 kb)
Online Resource 3(PDF 108 kb)
12265_2013_9504_MOESM4_ESM.pdf (479 kb)
Online Resource 4(PDF 479 kb)
12265_2013_9504_MOESM5_ESM.pdf (236 kb)
Online Resource 5(PDF 235 kb)

References

  1. 1.
    Mancini, M., Petretto, E., Kleinert, C., et al. (2013). Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat. Basic Research in Cardiology, 108, 316. doi:10.1007/s00395-012-0316-y.PubMedCrossRefGoogle Scholar
  2. 2.
    Sharma, P., Middelberg, R. P. S., Andrew, T., et al. (2006). Heritability of left ventricular mass in a large cohort of twins. Journal of Hypertension, 24, 321–324. doi:10.1097/01.hjh.0000202815.18083.03.PubMedCrossRefGoogle Scholar
  3. 3.
    Tousoulis, D., Androulakis, E., Papageorgiou, N., et al. (2013). Genetic predisposition to left ventricular hypertrophy and the potential involvement of cystatin-C in untreated hypertension. American Journal of Hypertension, 26, 683–690. doi:10.1093/ajh/hps089.PubMedCrossRefGoogle Scholar
  4. 4.
    Rekhraj, S., Gandy, S. J., Szwejkowski, B. R., et al. (2013). High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. Journal of the American College of Cardiology, 61, 926–932. doi:10.1016/j.jacc.2012.09.066.PubMedCrossRefGoogle Scholar
  5. 5.
    Lynch, A. I., Tang, W., Shi, G., et al. (2012). Epistatic effects of ACE I/D and AGT gene variants on left ventricular mass in hypertensive patients: the HyperGEN study. Journal of Human Hypertension, 26, 133–140. doi:10.1038/jhh.2010.131.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao, Y., Wang, C., Wu, J., et al. (2013). Choline protects against cardiac hypertrophy induced by increased after-load. International Journal of Biological Sciences, 9, 295–302. doi:10.7150/ijbs.5976.PubMedCrossRefGoogle Scholar
  7. 7.
    Givvimani, S., Kundu, S., Narayanan, N., et al. (2013). TIMP-2 mutant decreases MMP-2 activity and augments pressure overload induced LV dysfunction and heart failure. Archives of Physiology and Biochemistry, 119, 65–74. doi:10.3109/13813455.2012.755548.PubMedCrossRefGoogle Scholar
  8. 8.
    Hubner, N., Wallace, C. A., Zimdahl, H., et al. (2005). Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics, 37, 243–253. doi:10.1038/ng1522.PubMedCrossRefGoogle Scholar
  9. 9.
    Petretto, E., Sarwar, R., Grieve, I., et al. (2008). Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nature Genetics, 40, 546–552.PubMedCrossRefGoogle Scholar
  10. 10.
    McDermott-Roe, C., Ye, J., Ahmed, R., et al. (2011). Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature, 478, 114–118. doi:10.1038/nature10490.PubMedCrossRefGoogle Scholar
  11. 11.
    Pravenec, M., Klír, P., Kren, V., et al. (1989). An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. Journal of Hypertension, 7, 217–221.PubMedCrossRefGoogle Scholar
  12. 12.
    Herrmann, J., Kaski, J. C., & Lerman, A. (2012). Coronary microvascular dysfunction in the clinical setting: from mystery to reality. European Heart Journal, 33, 2771–2782b. doi:10.1093/eurheartj/ehs246.PubMedCrossRefGoogle Scholar
  13. 13.
    Camici, P. G., & Crea, F. (2007). Coronary microvascular dysfunction. The New England Journal of Medicine, 356, 830–840. doi:10.1056/NEJMra061889.PubMedCrossRefGoogle Scholar
  14. 14.
    Camici, P. G., Olivotto, I., & Rimoldi, O. E. (2012). The coronary circulation and blood flow in left ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 52, 857–864. doi:10.1016/j.yjmcc.2011.08.028.PubMedCrossRefGoogle Scholar
  15. 15.
    Steiner, M. K., Syrkina, O. L., Kolliputi, N., et al. (2009). Interleukin-6 overexpression induces pulmonary hypertension. Circulation Research, 104, 236–244. doi:10.1161/CIRCRESAHA.108.182014 (28 p following 244).PubMedCrossRefGoogle Scholar
  16. 16.
    Nickerson, M. M., Song, J., Meisner, J. K., et al. (2009). Bone marrow-derived cell-specific chemokine (C-C motif) receptor-2 expression is required for arteriolar remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1794–1801. doi:10.1161/ATVBAHA.109.194019.PubMedCrossRefGoogle Scholar
  17. 17.
    Smeda, J. S., Lee, R. M., & Forrest, J. B. (1988). Structural and reactivity alterations of the renal vasculature of spontaneously hypertensive rats prior to and during established hypertension. Circulation Research, 63, 518–533.PubMedCrossRefGoogle Scholar
  18. 18.
    Schadt, E. E. (2009). Molecular networks as sensors and drivers of common human diseases. Nature, 461, 218–223. doi:10.1038/nature08454.PubMedCrossRefGoogle Scholar
  19. 19.
    Hubner, N., Wallace, C. A., Zimdahl, H., et al. (2005). Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics, 37, 243–253.PubMedCrossRefGoogle Scholar
  20. 20.
    Opgen-Rhein, R., & Strimmer, K. (2007). From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Systems Biology, 1, 37. doi:10.1186/1752-0509-1-37.PubMedCrossRefGoogle Scholar
  21. 21.
    Pravenec, M., Churchill, P. C., Churchill, M. C., et al. (2008). Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nature Genetics, 40, 952–954. doi:10.1038/ng.164.PubMedCrossRefGoogle Scholar
  22. 22.
    Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559. doi:10.1186/1471-2105-9-559.PubMedCrossRefGoogle Scholar
  23. 23.
    Kanehisa, M., Goto, S., Sato, Y., et al. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40, D109–D114. doi:10.1093/nar/gkr988.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1–13. doi:10.1093/nar/gkn923.CrossRefGoogle Scholar
  25. 25.
    Rossin, E. J., Lage, K., Raychaudhuri, S., et al. (2011). Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genetics, 7, e1001273. doi:10.1371/journal.pgen.1001273.PubMedCrossRefGoogle Scholar
  26. 26.
    Roider, H. G., Manke, T., O'Keeffe, S., et al. (2009). PASTAA: identifying transcription factors associated with sets of co-regulated genes. Bioinformatics (Oxford, England), 25, 435–442. doi:10.1093/bioinformatics/btn627.CrossRefGoogle Scholar
  27. 27.
    Sánchez, N. S., & Barnett, J. V. (2012). TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway. Cellular Signalling, 24, 539–548. doi:10.1016/j.cellsig.2011.10.006.PubMedCrossRefGoogle Scholar
  28. 28.
    Berk, B. C., Fujiwara, K., & Lehoux, S. (2007). ECM remodeling in hypertensive heart disease. The Journal of Clinical Investigation, 117, 568–575. doi:10.1172/JCI31044.PubMedCrossRefGoogle Scholar
  29. 29.
    Yang, F., Dong, A., Mueller, P., et al. (2012). Coronary artery remodeling in a model of left ventricular pressure overload is influenced by platelets and inflammatory cells. PloS One, 7, e40196. doi:10.1371/journal.pone.0040196.PubMedCrossRefGoogle Scholar
  30. 30.
    Basu, R., Lee, J., Morton, J. S., et al. (2013). TIMP3 is the primary TIMP to regulate agonist-induced vascular remodelling and hypertension. Cardiovascular Research, 98, 360–371. doi:10.1093/cvr/cvt067.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, W., & Frangogiannis, N. G. (2013). Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica et Biophysica Acta, 1833, 945–953. doi:10.1016/j.bbamcr.2012.08.023.PubMedCrossRefGoogle Scholar
  32. 32.
    Bo, S., Mandrile, C., Milanesio, N., et al. (2012). Is left ventricular hypertrophy a low-level inflammatory state? A population-based cohort study. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 22, 668–676. doi:10.1016/j.numecd.2010.11.004.PubMedCrossRefGoogle Scholar
  33. 33.
    Dobaczewski, M., Chen, W., & Frangogiannis, N. G. (2011). Transforming growth factor (TGF)-β signaling in cardiac remodeling. Journal of Molecular and Cellular Cardiology, 51, 600–606. doi:10.1016/j.yjmcc.2010.10.033.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu, Y., Wagner, D. R., Bekerman, E., et al. (2010). Connective tissue growth factor in regulation of RhoA mediated cytoskeletal tension associated osteogenesis of mouse adipose-derived stromal cells. PloS One, 5, e11279. doi:10.1371/journal.pone.0011279.PubMedCrossRefGoogle Scholar
  35. 35.
    Panek, A. N., Posch, M. G., Alenina, N., et al. (2009). Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PloS One, 4, e6743. doi:10.1371/journal.pone.0006743.PubMedCrossRefGoogle Scholar
  36. 36.
    Gravning, J., Ahmed, M. S., Von Lueder, T. G., et al. (2013). CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. International Journal of Cardiology. doi:10.1016/j.ijcard.2013.01.165.PubMedGoogle Scholar
  37. 37.
    Blom, I. E., Van Dijk, A. J., De Weger, R. A., et al. (2001). Identification of human ccn2 (connective tissue growth factor) promoter polymorphisms. Molecular Pathology: MP, 54, 192–196.CrossRefGoogle Scholar
  38. 38.
    Daniels, A., Van Bilsen, M., Goldschmeding, R., et al. (2009). Connective tissue growth factor and cardiac fibrosis. Acta Physiologica (Oxford, England), 195, 321–338. doi:10.1111/j.1748-1716.2008.01936.x.CrossRefGoogle Scholar
  39. 39.
    Cecchi, F., Olivotto, I., Gistri, R., et al. (2003). Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. The New England Journal of Medicine, 349, 1027–1035. doi:10.1056/NEJMoa025050.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang, R., Crump, J., & Reisin, E. (2003). Regression of left ventricular hypertrophy is a key goal of hypertension management. Current Hypertension Reports, 5, 301–308.PubMedCrossRefGoogle Scholar
  41. 41.
    Maron, M. S., Olivotto, I., Maron, B. J., et al. (2009). The case for myocardial ischemia in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 54, 866–875. doi:10.1016/j.jacc.2009.04.072.PubMedCrossRefGoogle Scholar
  42. 42.
    Lehner, B., & Lee, I. (2008). Network-guided genetic screening: building, testing and using gene networks to predict gene function. Briefings in Functional Genomics & Proteomics, 7, 217–227. doi:10.1093/bfgp/eln020.CrossRefGoogle Scholar
  43. 43.
    Benaglia, T., Chauveau, D., Hunter, D. R., & Young, D. (2009). mixtools: an R package for analyzing finite mixture models. Journal of Statistical Software, 32, 1–29.Google Scholar
  44. 44.
    Hebenstreit, D., Fang, M., Gu, M., et al. (2011). RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Molecular Systems Biology, 7, 497. doi:10.1038/msb.2011.28.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4(1). doi:10.2202/1544-6115.1128.
  46. 46.
    Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30, 81–89.Google Scholar
  47. 47.
    Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57. doi:10.1038/nprot.2008.211.CrossRefGoogle Scholar
  48. 48.
    Bryne, J. C., Valen, E., Tang, M.-H. E., et al. (2008). JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Research, 36, D102–D106. doi:10.1093/nar/gkm955.PubMedCrossRefGoogle Scholar
  49. 49.
    Benjamini, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57, 289–300.Google Scholar
  50. 50.
    Hardin, J., Mitani, A., Hicks, L., & VanKoten, B. (2007). A robust measure of correlation between two genes on a microarray. BMC Bioinformatics, 8, 220. doi:10.1186/1471-2105-8-220.PubMedCrossRefGoogle Scholar
  51. 51.
    Hannenhalli, S., Putt, M. E., Gilmore, J. M., et al. (2006). Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation, 114, 1269–1276.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Aida Moreno-Moral
    • 1
  • Massimiliano Mancini
    • 2
  • Giulia D’Amati
    • 2
  • Paolo Camici
    • 3
  • Enrico Petretto
    • 1
  1. 1.Medical Research Council (MRC) Clinical Sciences Centre, Faculty of MedicineImperial College London, Hammersmith HospitalLondonUK
  2. 2.Department of Radiology, Oncology and PathologySapienza University of RomeRomeItaly
  3. 3.San Raffaele Scientific InstituteVita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations