Journal of Cardiovascular Translational Research

, Volume 6, Issue 6, pp 884–898 | Cite as

Circulating MicroRNAs as Novel Biomarkers for the Early Diagnosis of Acute Coronary Syndrome

  • J. C. Deddens
  • J. M. Colijn
  • M. I. F. J. Oerlemans
  • G. Pasterkamp
  • S. A. Chamuleau
  • P. A. Doevendans
  • J. P. G. Sluijter
Article

Abstract

Small non-coding microRNAs (miRNAs) are important physiological regulators of post-transcriptional gene expression. miRNAs not only reside in the cytoplasm but are also stably present in several extracellular compartments, including the circulation. For that reason, miRNAs are proposed as diagnostic biomarkers for various diseases. Early diagnosis of acute coronary syndrome (ACS), especially non-ST elevated myocardial infarction and unstable angina pectoris, is essential for optimal treatment outcome, and due to the ongoing need for additional identifiers, miRNAs are of special interest as biomarkers for ACS. This review highlights the nature and cellular release mechanisms of circulating miRNAs and therefore their potential role in the diagnosis of myocardial infarction. We will give an update of clinical studies addressing the role of circulating miRNA expression after myocardial infarction and explore the diagnostic value of this potential biomarker.

Keywords

ACS Circulating microRNAs Myocardial infarction Biomarkers 

Notes

Acknowledgements

We acknowledge the support from “Stichting Swaeneborgh”, a ZonMW Translational Adult Stem Cell (TAS) grant 1161002016, and the Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences.

References

  1. 1.
    Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Borden, W. B., Bravata, D. M., Dai, S., Ford, E. S., Fox, C. S., et al. (2013). Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation, 127, e6–e245. doi: 10.1161/CIR.0b013e31828124ad.PubMedGoogle Scholar
  2. 2.
    Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., White, H. D., & Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial. (2012). Third universal definition of myocardial infarction. European Heart Journal, 33, 2551–2567. doi: 10.1093/eurheartj/ehs184.PubMedGoogle Scholar
  3. 3.
    Anderson, J. L., Adams, C. D., Antman, E. M., Bridges, C. R., Califf, R. M., Casey, D. E., Jr., Chavey, W. E., 2nd, Fesmire, F. M., Hochman, J. S., Levin, T. N., et al. (2013). 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Journal of the American College of Cardiology, 61, e179–347. doi: 10.1016/j.jacc.2013.01.014.PubMedGoogle Scholar
  4. 4.
    Oerlemans, M. I., Liu, J., Arslan, F., den Ouden, K., van Middelaar, B. J., Doevendans, P. A., & Sluijter, J. P. (2012). Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Research in Cardiology, 107, 270. doi: 10.1007/s00395-012-0270-8.PubMedGoogle Scholar
  5. 5.
    Oerlemans, M. I., Koudstaal, S., Chamuleau, S. A., de Kleijn, D. P., Doevendans, P. A., & Sluijter, J. P. (2013). Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. International Journal of Cardiology, 165, 410–422. doi: 10.1016/j.ijcard.2012.03.055.PubMedGoogle Scholar
  6. 6.
    Bodor, G. S., Porter, S., Landt, Y., & Ladenson, J. H. (1992). Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clinical Chemistry, 38, 2203–2214.PubMedGoogle Scholar
  7. 7.
    Cummins, B., Auckland, M. L., & Cummins, P. (1987). Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. American Heart Journal, 113, 1333–1344.PubMedGoogle Scholar
  8. 8.
    Hamm, C. W., Goldmann, B. U., Heeschen, C., Kreymann, G., Berger, J., & Meinertz, T. (1997). Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. The New England Journal of Medicine, 337, 1648–1653. doi: 10.1056/NEJM199712043372302.PubMedGoogle Scholar
  9. 9.
    Liebetrau, C., Mollmann, H., Nef, H., Szardien, S., Rixe, J., Troidl, C., Willmer, M., Hoffmann, J., Weber, M., Rolf, A., et al. (2012). Release kinetics of cardiac biomarkers in patients undergoing transcoronary ablation of septal hypertrophy. Clinical Chemistry, 58, 1049–1054. doi: 10.1373/clinchem.2011.178129.PubMedGoogle Scholar
  10. 10.
    Meder, B., Keller, A., Vogel, B., Haas, J., Sedaghat-Hamedani, F., Kayvanpour, E., Just, S., Borries, A., Rudloff, J., Leidinger, P., et al. (2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Research in Cardiology, 106, 13–23. doi: 10.1007/s00395-010-0123-2.PubMedGoogle Scholar
  11. 11.
    Oerlemans, M. I., Mosterd, A., Dekker, M. S., de Vrey, E. A., van Mil, A., Pasterkamp, G., Doevendans, P. A., Hoes, A. W., & Sluijter, J. P. (2012). Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Molecular Medicine, 4, 1176–1185. doi: 10.1002/emmm.201201749.PubMedGoogle Scholar
  12. 12.
    Keller, T., Zeller, T., Peetz, D., Tzikas, S., Roth, A., Czyz, E., Bickel, C., Baldus, S., Warnholtz, A., Frohlich, M., et al. (2009). Sensitive troponin I assay in early diagnosis of acute myocardial infarction. The New England Journal of Medicine, 361, 868–877. doi: 10.1056/NEJMoa0903515.PubMedGoogle Scholar
  13. 13.
    Reiter, M., Twerenbold, R., Reichlin, T., Haaf, P., Peter, F., Meissner, J., Hochholzer, W., Stelzig, C., Freese, M., Heinisch, C., et al. (2011). Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. European Heart Journal, 32, 1379–1389. doi: 10.1093/eurheartj/ehr033.PubMedGoogle Scholar
  14. 14.
    de Lemos, J. A., Drazner, M. H., Omland, T., Ayers, C. R., Khera, A., Rohatgi, A., Hashim, I., Berry, J. D., Das, S. R., Morrow, D. A., et al. (2010). Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. Journal of the American Medical Association, 304, 2503–2512. doi: 10.1001/jama.2010.1768.PubMedGoogle Scholar
  15. 15.
    Eggers, K. M., Lind, L., Ahlstrom, H., Bjerner, T., Ebeling Barbier, C., Larsson, A., Venge, P., & Lindahl, B. (2008). Prevalence and pathophysiological mechanisms of elevated cardiac troponin I levels in a population-based sample of elderly subjects. European Heart Journal, 29, 2252–2258. doi: 10.1093/eurheartj/ehn327.PubMedGoogle Scholar
  16. 16.
    Grande, P., Hansen, B. F., Christiansen, C., & Naestoft, J. (1981). Acute myocardial infarct size estimated by serum CK-MB determinations: clinical accuracy and prognostic relevance utilizing a practical modification of the isoenzyme approach. American Heart Journal, 101, 582–586.PubMedGoogle Scholar
  17. 17.
    Alpert, J. S., Thygesen, K., Antman, E., & Bassand, J. P. (2000). Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Journal of the American College of Cardiology, 36, 959–969.PubMedGoogle Scholar
  18. 18.
    de Winter, R. J., Koster, R. W., Sturk, A., & Sanders, G. T. (1995). Value of myoglobin, troponin T, and CK-MBmass in ruling out an acute myocardial infarction in the emergency room. Circulation, 92, 3401–3407.PubMedGoogle Scholar
  19. 19.
    Ishii, J., Wang, J. H., Naruse, H., Taga, S., Kinoshita, M., Kurokawa, H., Iwase, M., Kondo, T., Nomura, M., Nagamura, Y., et al. (1997). Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clinical Chemistry, 43, 1372–1378.PubMedGoogle Scholar
  20. 20.
    Freund, Y., Chenevier-Gobeaux, C., Leumani, F., Claessens, Y. E., Allo, J. C., Doumenc, B., Cosson, C., Bonnet, P., Riou, B., & Ray, P. (2012). Heart-type fatty acid binding protein and the diagnosis of acute coronary syndrome in the ED. The American Journal of Emergency Medicine, 30, 1378–1384. doi: 10.1016/j.ajem.2011.10.001.PubMedGoogle Scholar
  21. 21.
    James, S. K., Oldgren, J., Lindback, J., Johnston, N., Siegbahn, A., & Wallentin, L. (2005). An acute inflammatory reaction induced by myocardial damage is superimposed on a chronic inflammation in unstable coronary artery disease. American Heart Journal, 149, 619–626. doi: 10.1016/j.ahj.2004.08.026.PubMedGoogle Scholar
  22. 22.
    Morita, E., Yasue, H., Yoshimura, M., Ogawa, H., Jougasaki, M., Matsumura, T., Mukoyama, M., & Nakao, K. (1993). Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation, 88, 82–91.PubMedGoogle Scholar
  23. 23.
    Afzali, D., Erren, M., Pavenstadt, H. J., Vollert, J. O., Hertel, S., Waltenberger, J., Reinecke, H., & Lebiedz, P. (2013). Impact of copeptin on diagnosis, risk stratification, and intermediate-term prognosis of acute coronary syndromes. Clinical Research in Cardiology (in press). doi: 10.1007/s00392-013-0583-0.Google Scholar
  24. 24.
    Peacock, F., Morris, D. L., Anwaruddin, S., Christenson, R. H., Collinson, P. O., Goodacre, S. W., Januzzi, J. L., Jesse, R. L., Kaski, J. C., Kontos, M. C., et al. (2006). Meta-analysis of ischemia-modified albumin to rule out acute coronary syndromes in the emergency department. American Heart Journal, 152, 253–262. doi: 10.1016/j.ahj.2005.12.024.PubMedGoogle Scholar
  25. 25.
    Lindahl, B. (2013). Acute coronary syndrome—the present and future role of biomarkers. Clinical Chemistry and Laboratory Medicine, 23, 1–8. doi: 10.1515/cclm-2013-0074.Google Scholar
  26. 26.
    Tijsen, A. J., Pinto, Y. M., & Creemers, E. E. (2012). Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 303, H1085–95. doi: 10.1152/ajpheart.00191.2012.PubMedGoogle Scholar
  27. 27.
    Li, C., Pei, F., Zhu, X., Duan, D. D., & Zeng, C. (2012). Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clinical Biochemistry, 45, 727–732. doi: 10.1016/j.clinbiochem.2012.04.013.PubMedGoogle Scholar
  28. 28.
    Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., Kelnar, K., Kemppainen, J., Brown, D., Chen, C., et al. (2008). Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer's Disease, 14, 27–41.PubMedGoogle Scholar
  29. 29.
    Park, N. J., Zhou, H., Elashoff, D., Henson, B. S., Kastratovic, D. A., Abemayor, E., & Wong, D. T. (2009). Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clinical Cancer Research, 15, 5473–5477. doi: 10.1158/1078-0432.CCR-09-0736.PubMedGoogle Scholar
  30. 30.
    Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518. doi: 10.1073/pnas.0804549105.PubMedGoogle Scholar
  31. 31.
    Zubakov, D., Boersma, A. W., Choi, Y., van Kuijk, P. F., Wiemer, E. A., & Kayser, M. (2010). MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. International Journal of Legal Medicine, 124, 217–226. doi: 10.1007/s00414-009-0402-3.PubMedGoogle Scholar
  32. 32.
    Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006. doi: 10.1038/cr.2008.282.PubMedGoogle Scholar
  33. 33.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858. doi: 10.1126/science.1064921.PubMedGoogle Scholar
  34. 34.
    Lytle, J. R., Yario, T. A., & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proceedings of the National Academy of Sciences of the United States of America, 104, 9667–9672. doi: 10.1073/pnas.0703820104.PubMedGoogle Scholar
  35. 35.
    Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., & Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 microRNA in human cells. Science, 309, 1573–1576. doi: 10.1126/science.1115079.PubMedGoogle Scholar
  36. 36.
    Wu, L., Fan, J., & Belasco, J. G. (2006). MicroRNAs direct rapid deadenylation of mRNA. Proceedings of the National Academy of Sciences of the United States of America, 103, 4034–4039. doi: 10.1073/pnas.0510928103.PubMedGoogle Scholar
  37. 37.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedGoogle Scholar
  38. 38.
    Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10, 94–108. doi: 10.1038/nrg2504.PubMedGoogle Scholar
  39. 39.
    Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11, 228–234. doi: 10.1038/ncb0309-228.PubMedGoogle Scholar
  40. 40.
    Guo, H., Ingolia, N. T., Weissman, J. S., & Bartel, D. P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466, 835–840. doi: 10.1038/nature09267.PubMedGoogle Scholar
  41. 41.
    Sluijter, J. P., van Mil, A., van Vliet, P., Metz, C. H., Liu, J., Doevendans, P. A., & Goumans, M. J. (2010). MicroRNA-1 and −499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 859–868. doi: 10.1161/ATVBAHA.109.197434.PubMedGoogle Scholar
  42. 42.
    Kota, J., Chivukula, R. R., O'Donnell, K. A., Wentzel, E. A., Montgomery, C. L., Hwang, H. W., Chang, T. C., Vivekanandan, P., Torbenson, M., Clark, K. R., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137, 1005–1017. doi: 10.1016/j.cell.2009.04.021.PubMedGoogle Scholar
  43. 43.
    Lin, C. J., Gong, H. Y., Tseng, H. C., Wang, W. L., & Wu, J. L. (2008). miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochemical and Biophysical Research Communications, 375, 315–320. doi: 10.1016/j.bbrc.2008.07.154.PubMedGoogle Scholar
  44. 44.
    Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99, 15524–15529. doi: 10.1073/pnas.242606799.PubMedGoogle Scholar
  45. 45.
    Murakami, Y., Toyoda, H., Tanaka, M., Kuroda, M., Harada, Y., Matsuda, F., Tajima, A., Kosaka, N., Ochiya, T., & Shimotohno, K. (2011). The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One, 6, e16081. doi: 10.1371/journal.pone.0016081.PubMedGoogle Scholar
  46. 46.
    Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., Rojas, M., Hammond, S. M., Schneider, M. D., Selzman, C. H., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 105, 2111–2116. doi: 10.1073/pnas.0710228105.PubMedGoogle Scholar
  47. 47.
    Madrigal-Matute, J., Rotllan, N., Aranda, J. F., & Fernandez-Hernando, C. (2013). MicroRNAs and atherosclerosis. Current Atherosclerosis Reports, 15, 322. doi: 10.1007/s11883-013-0322-z.PubMedGoogle Scholar
  48. 48.
    Rayner, K. J., Suarez, Y., Davalos, A., Parathath, S., Fitzgerald, M. L., Tamehiro, N., Fisher, E. A., Moore, K. J., & Fernandez-Hernando, C. (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 328, 1570–1573. doi: 10.1126/science.1189862.PubMedGoogle Scholar
  49. 49.
    Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., Fox, H., Doebele, C., Ohtani, K., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324, 1710–1713. doi: 10.1126/science.1174381.PubMedGoogle Scholar
  50. 50.
    Tijsen, A. J., Creemers, E. E., Moerland, P. D., de Windt, L. J., van der Wal, A. C., Kok, W. E., & Pinto, Y. M. (2010). MiR423-5p as a circulating biomarker for heart failure. Circulation Research, 106, 1035–1039. doi: 10.1161/CIRCRESAHA.110.218297.PubMedGoogle Scholar
  51. 51.
    Hoekstra, M., van der Lans, C. A., Halvorsen, B., Gullestad, L., Kuiper, J., Aukrust, P., van Berkel, T. J., & Biessen, E. A. (2010). The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochemical and Biophysical Research Communications, 394, 792–797. doi: 10.1016/j.bbrc.2010.03.075.PubMedGoogle Scholar
  52. 52.
    Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838. doi: 10.1038/nature03702.PubMedGoogle Scholar
  53. 53.
    Liu, C. G., Calin, G. A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, M., Dumitru, C. D., Shimizu, M., Zupo, S., Dono, M., et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 101, 9740–9744. doi: 10.1073/pnas.0403293101.PubMedGoogle Scholar
  54. 54.
    Hanke, M., Hoefig, K., Merz, H., Feller, A. C., Kausch, I., Jocham, D., Warnecke, J. M., & Sczakiel, G. (2010). A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urologic Oncology, 28, 655–661. doi: 10.1016/j.urolonc.2009.01.027.PubMedGoogle Scholar
  55. 55.
    Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Koppel, T., Jahantigh, M. N., Lutgens, E., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2, ra81. doi: 10.1126/scisignal.2000610.PubMedGoogle Scholar
  56. 56.
    Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659. doi: 10.1038/ncb1596.PubMedGoogle Scholar
  57. 57.
    Xu, L., Yang, B. F., & Ai, J. (2013). MicroRNA transport: a new way in cell communication. Journal of Cellular Physiology, 228, 1713–1719. doi: 10.1002/jcp.24344.PubMedGoogle Scholar
  58. 58.
    Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America, 108, 5003–5008. doi: 10.1073/pnas.1019055108.PubMedGoogle Scholar
  59. 59.
    Wang, K., Zhang, S., Weber, J., Baxter, D., & Galas, D. J. (2010). Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Research, 38, 7248–7259. doi: 10.1093/nar/gkq601.PubMedGoogle Scholar
  60. 60.
    Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13, 423–433. doi: 10.1038/ncb2210.PubMedGoogle Scholar
  61. 61.
    Wagner, J., Riwanto, M., Besler, C., Knau, A., Fichtlscherer, S., Roxe, T., Zeiher, A. M., Landmesser, U., & Dimmeler, S. (2013). Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 1392–1400. doi: 10.1161/ATVBAHA.112.300741.PubMedGoogle Scholar
  62. 62.
    Collino, F., Deregibus, M. C., Bruno, S., Sterpone, L., Aghemo, G., Viltono, L., Tetta, C., & Camussi, G. (2010). Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One, 5, e11803. doi: 10.1371/journal.pone.0011803.PubMedGoogle Scholar
  63. 63.
    El-Hefnawy, T., Raja, S., Kelly, L., Bigbee, W. L., Kirkwood, J. M., Luketich, J. D., & Godfrey, T. E. (2004). Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clinical Chemistry, 50, 564–573. doi: 10.1373/clinchem.2003.028506.PubMedGoogle Scholar
  64. 64.
    Guduric-Fuchs, J., O'Connor, A., Camp, B., O'Neill, C. L., Medina, R. J., & Simpson, D. A. (2012). Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics, 13, 357. doi: 10.1186/1471-2164-13-357.PubMedGoogle Scholar
  65. 65.
    Stoorvogel, W. (2012). Functional transfer of microRNA by exosomes. Blood, 119, 646–648. doi: 10.1182/blood-2011-11-389478.PubMedGoogle Scholar
  66. 66.
    Keller, S., Sanderson, M. P., Stoeck, A., & Altevogt, P. (2006). Exosomes: from biogenesis and secretion to biological function. Immunology Letters, 107, 102–108. doi: 10.1016/j.imlet.2006.09.005.PubMedGoogle Scholar
  67. 67.
    Thery, C. (2011). Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep, 3, 15–15. doi: 10.3410/B3-15.PubMedGoogle Scholar
  68. 68.
    Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010). Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological Chemistry, 285, 17442–17452. doi: 10.1074/jbc.M110.107821.PubMedGoogle Scholar
  69. 69.
    Savina, A., Furlan, M., Vidal, M., & Colombo, M. I. (2003). Exosome release is regulated by a calcium-dependent mechanism in K562 cells. Journal of Biological Chemistry, 278, 20083–20090. doi: 10.1074/jbc.M301642200.PubMedGoogle Scholar
  70. 70.
    Savina, A., Fader, C. M., Damiani, M. T., & Colombo, M. I. (2005). Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic, 6, 131–143. doi: 10.1111/j.1600-0854.2004.00257.x.PubMedGoogle Scholar
  71. 71.
    Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., Watanabe, S., Baba, O., Kojima, Y., Shizuta, S., et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation. Cardiovascular Genetics, 4, 446–454. doi: 10.1161/CIRCGENETICS.110.958975.PubMedGoogle Scholar
  72. 72.
    Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233. doi: 10.1016/j.cell.2009.01.002.PubMedGoogle Scholar
  73. 73.
    Weber, C. (2013). MicroRNAs: from basic mechanisms to clinical application in cardiovascular medicine. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 168–169. doi: 10.1161/ATVBAHA.112.300920.PubMedGoogle Scholar
  74. 74.
    Mendell, J. T., & Olson, E. N. (2012). MicroRNAs in stress signaling and human disease. Cell, 148, 1172–1187. doi: 10.1016/j.cell.2012.02.005.PubMedGoogle Scholar
  75. 75.
    Fiedler, J., & Thum, T. (2013). MicroRNAs in myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 201–205. doi: 10.1161/ATVBAHA.112.300137.PubMedGoogle Scholar
  76. 76.
    He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531. doi: 10.1038/nrg1379.PubMedGoogle Scholar
  77. 77.
    Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segnalini, P., Gu, Y., Dalton, N. D., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618. doi: 10.1038/nm1582.PubMedGoogle Scholar
  78. 78.
    D'Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P. G., Rubino, M., Carena, M. C., Spazzafumo, L., De Simone, M., et al. (2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 31, 2765–2773. doi: 10.1093/eurheartj/ehq167.PubMedGoogle Scholar
  79. 79.
    Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., Weber, M., Hamm, C. W., Roxe, T., Muller-Ardogan, M., et al. (2010). Circulating microRNAs in patients with coronary artery disease. Circulation Research, 107, 677–684. doi: 10.1161/CIRCRESAHA.109.215566.PubMedGoogle Scholar
  80. 80.
    Fiedler, J., Jazbutyte, V., Kirchmaier, B. C., Gupta, S. K., Lorenzen, J., Hartmann, D., Galuppo, P., Kneitz, S., Pena, J. T., Sohn-Lee, C., et al. (2011). MicroRNA-24 regulates vascularity after myocardial infarction. Circulation, 124, 720–730. doi: 10.1161/CIRCULATIONAHA.111.039008.PubMedGoogle Scholar
  81. 81.
    Shi, B., Guo, Y., Wang, J., & Gao, W. (2010). Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovascular Disorders, 10, 11. doi: 10.1186/1471-2261-10-11.PubMedGoogle Scholar
  82. 82.
    Shan, Z. X., Lin, Q. X., Fu, Y. H., Deng, C. Y., Zhou, Z. L., Zhu, J. N., Liu, X. Y., Zhang, Y. Y., Li, Y., Lin, S. G., et al. (2009). Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochemical and Biophysical Research Communications, 381, 597–601. doi: 10.1016/j.bbrc.2009.02.097.PubMedGoogle Scholar
  83. 83.
    Bostjancic, E., Zidar, N., & Glavac, D. (2009). MicroRNA microarray expression profiling in human myocardial infarction. Disease Markers, 27, 255–268. doi: 10.3233/DMA-2009-0671.PubMedGoogle Scholar
  84. 84.
    Bostjancic, E., Zidar, N., Stajer, D., & Glavac, D. (2010). MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology, 115, 163–169. doi: 10.1159/000268088.PubMedGoogle Scholar
  85. 85.
    Bostjancic, E., Zidar, N., Stajner, D., & Glavac, D. (2010). MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction. Folia Biol (Praha), 56, 27–31.Google Scholar
  86. 86.
    van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., Hill, J. A., & Olson, E. N. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13027–13032. doi: 10.1073/pnas.0805038105.PubMedGoogle Scholar
  87. 87.
    De Rosa, S., Fichtlscherer, S., Lehmann, R., Assmus, B., Dimmeler, S., & Zeiher, A. M. (2011). Transcoronary concentration gradients of circulating microRNAs. Circulation, 124, 1936–1944. doi: 10.1161/CIRCULATIONAHA.111.037572.PubMedGoogle Scholar
  88. 88.
    Gidlof, O., Smith, J. G., Miyazu, K., Gilje, P., Spencer, A., Blomquist, S., & Erlinge, D. (2013). Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovascular Disorders, 13, 12. doi: 10.1186/1471-2261-13-12.PubMedGoogle Scholar
  89. 89.
    Sluijter, J. (2013). MicroRNAs in cardiovascular regenerative medicine: directing tissue repair and cellular differentiation. ISRN Vascular Medicine, 2013, 593517.Google Scholar
  90. 90.
    Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., & Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233. doi: 10.1038/ng1725.PubMedGoogle Scholar
  91. 91.
    Kloosterman, W. P., Steiner, F. A., Berezikov, E., de Bruijn, E., van de Belt, J., Verheul, M., Cuppen, E., & Plasterk, R. H. (2006). Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Research, 34, 2558–2569. doi: 10.1093/nar/gkl278.PubMedGoogle Scholar
  92. 92.
    van Rooij, E., Quiat, D., Johnson, B. A., Sutherland, L. B., Qi, X., Richardson, J. A., Kelm, R. J., Jr., & Olson, E. N. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developmental Cell, 17, 662–673. doi: 10.1016/j.devcel.2009.10.013.PubMedGoogle Scholar
  93. 93.
    University of Manchester, Faculty of Life Science (2012). miRBase. http://www.mirbase.org. Accessed 3 May 2013.
  94. 94.
    Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220. doi: 10.1038/nature03817.PubMedGoogle Scholar
  95. 95.
    Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 13, 486–491. doi: 10.1038/nm1569.PubMedGoogle Scholar
  96. 96.
    Catalucci, D., Latronico, M. V., & Condorelli, G. (2008). MicroRNAs control gene expression: importance for cardiac development and pathophysiology. Annals of the New York Academy of Sciences, 1123, 20–29. doi: 10.1196/annals.1420.004.PubMedGoogle Scholar
  97. 97.
    Ai, J., Zhang, R., Li, Y., Pu, J., Lu, Y., Jiao, J., Li, K., Yu, B., Li, Z., Wang, R., et al. (2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and Biophysical Research Communications, 391, 73–77. doi: 10.1016/j.bbrc.2009.11.005.PubMedGoogle Scholar
  98. 98.
    Cheng, Y., Tan, N., Yang, J., Liu, X., Cao, X., He, P., Dong, X., Qin, S., & Zhang, C. (2010). A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clinical Science (London, England), 119, 87–95. doi: 10.1042/CS20090645.Google Scholar
  99. 99.
    Corsten, M. F., Dennert, R., Jochems, S., Kuznetsova, T., Devaux, Y., Hofstra, L., Wagner, D. R., Staessen, J. A., Heymans, S., & Schroen, B. (2010). Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circulation Cardiovascular Genetics, 3, 499–506. doi: 10.1161/CIRCGENETICS.110.957415.PubMedGoogle Scholar
  100. 100.
    Gidlof, O., Andersson, P., van der Pals, J., Gotberg, M., & Erlinge, D. (2011). Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology, 118, 217–226. doi: 10.1159/000328869.PubMedGoogle Scholar
  101. 101.
    Li, Y. Q., Zhang, M. F., Wen, H. Y., Hu, C. L., Liu, R., Wei, H. Y., Ai, C. M., Wang, G., Liao, X. X., & Li, X. (2013). Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics (São Paulo, Brazil), 68, 75–80.Google Scholar
  102. 102.
    Long, G., Wang, F., Duan, Q., Chen, F., Yang, S., Gong, W., Wang, Y., Chen, C., & Wang, D. W. (2012). Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. International Journal of Biological Sciences, 8, 811–818. doi: 10.7150/ijbs.4439.PubMedGoogle Scholar
  103. 103.
    Wang, G. K., Zhu, J. Q., Zhang, J. T., Li, Q., Li, Y., He, J., Qin, Y. W., & Jing, Q. (2010). Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal, 31, 659–666. doi: 10.1093/eurheartj/ehq013.PubMedGoogle Scholar
  104. 104.
    Widera, C., Gupta, S. K., Lorenzen, J. M., Bang, C., Bauersachs, J., Bethmann, K., Kempf, T., Wollert, K. C., & Thum, T. (2011). Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of Molecular and Cellular Cardiology, 51, 872–875. doi: 10.1016/j.yjmcc.2011.07.011.PubMedGoogle Scholar
  105. 105.
    Zile, M. R., Mehurg, S. M., Arroyo, J. E., Stroud, R. E., DeSantis, S. M., & Spinale, F. G. (2011). Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circulation Cardiovascular Genetics, 4, 614–619. doi: 10.1161/CIRCGENETICS.111.959841.PubMedGoogle Scholar
  106. 106.
    Olivieri, F., Antonicelli, R., Lorenzi, M., D'Alessandra, Y., Lazzarini, R., Santini, G., Spazzafumo, L., Lisa, R., La Sala, L., Galeazzi, R., et al. (2013). Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. International Journal of Cardiology, 167, 531–536. doi: 10.1016/j.ijcard.2012.01.075.PubMedGoogle Scholar
  107. 107.
    Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., & Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34, D140–4. doi: 10.1093/nar/gkj112.PubMedGoogle Scholar
  108. 108.
    Torella, D., Iaconetti, C., Catalucci, D., Ellison, G. M., Leone, A., Waring, C. D., Bochicchio, A., Vicinanza, C., Aquila, I., Curcio, A., et al. (2011). MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circulation Research, 109, 880–893. doi: 10.1161/CIRCRESAHA.111.240150.PubMedGoogle Scholar
  109. 109.
    Wang, R., Li, N., Zhang, Y., Ran, Y., & Pu, J. (2011). Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Internal Medicine, 50, 1789–1795.PubMedGoogle Scholar
  110. 110.
    Thygesen, K., Mair, J., Katus, H., Plebani, M., Venge, P., Collinson, P., Lindahl, B., Giannitsis, E., Hasin, Y., Galvani, M., et al. (2010). Recommendations for the use of cardiac troponin measurement in acute cardiac care. European Heart Journal, 31, 2197–2204. doi: 10.1093/eurheartj/ehq251.PubMedGoogle Scholar
  111. 111.
    van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–579. doi: 10.1126/science.1139089.PubMedGoogle Scholar
  112. 112.
    Callis, T. E., Pandya, K., Seok, H. Y., Tang, R. H., Tatsuguchi, M., Huang, Z. P., Chen, J. F., Deng, Z., Gunn, B., Shumate, J., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. The Journal of Clinical Investigation, 119, 2772–2786. doi: 10.1172/JCI36154.PubMedGoogle Scholar
  113. 113.
    Adachi, T., Nakanishi, M., Otsuka, Y., Nishimura, K., Hirokawa, G., Goto, Y., Nonogi, H., & Iwai, N. (2010). Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clinical Chemistry, 56, 1183–1185. doi: 10.1373/clinchem.2010.144121.PubMedGoogle Scholar
  114. 114.
    Devaux, Y., Vausort, M., Goretti, E., Nazarov, P. V., Azuaje, F., Gilson, G., Corsten, M. F., Schroen, B., Lair, M. L., Heymans, S., et al. (2012). Use of circulating microRNAs to diagnose acute myocardial infarction. Clinical Chemistry, 58, 559–567. doi: 10.1373/clinchem.2011.173823.PubMedGoogle Scholar
  115. 115.
    Wang, J. X., Jiao, J. Q., Li, Q., Long, B., Wang, K., Liu, J. P., Li, Y. R., & Li, P. F. (2011). miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nature Medicine, 17, 71–78. doi: 10.1038/nm.2282.PubMedGoogle Scholar
  116. 116.
    Hosoda, T., Zheng, H., Cabral-da-Silva, M., Sanada, F., Ide-Iwata, N., Ogorek, B., Ferreira-Martins, J., Arranto, C., D'Amario, D., del Monte, F., et al. (2011). Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation, 123, 1287–1296. doi: 10.1161/CIRCULATIONAHA.110.982918.PubMedGoogle Scholar
  117. 117.
    Cacchiarelli, D., Legnini, I., Martone, J., Cazzella, V., D'Amico, A., Bertini, E., & Bozzoni, I. (2011). miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Molecular Medicine, 3, 258–265. doi: 10.1002/emmm.201100133.PubMedGoogle Scholar
  118. 118.
    Salic, K., & De Windt, L. J. (2012). MicroRNAs as biomarkers for myocardial infarction. Current Atherosclerosis Reports, 14, 193–200. doi: 10.1007/s11883-012-0238-z.PubMedGoogle Scholar
  119. 119.
    Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., Richardson, J. A., Bassel-Duby, R., & Olson, E. N. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15, 261–271. doi: 10.1016/j.devcel.2008.07.002.PubMedGoogle Scholar
  120. 120.
    Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., Lee, T. H., Miano, J. M., Ivey, K. N., & Srivastava, D. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460, 705–710. doi: 10.1038/nature08195.PubMedGoogle Scholar
  121. 121.
    Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., Ivey, K. N., Bruneau, B. G., Stainier, D. Y., & Srivastava, D. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell, 15, 272–284. doi: 10.1016/j.devcel.2008.07.008.PubMedGoogle Scholar
  122. 122.
    Kuhnert, F., Mancuso, M. R., Hampton, J., Stankunas, K., Asano, T., Chen, C. Z., & Kuo, C. J. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135, 3989–3993. doi: 10.1242/dev.029736.PubMedGoogle Scholar
  123. 123.
    Zhou, J., Li, J. Y., Nguyen, P., Wang, K. C., Weiss, A., Kuo, Y. C., Chiu, J. J., Shyy, J. Y., & Chien, S. (2013). Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circulation Research, 113, 40–51. doi: 10.1161/CIRCRESAHA.113.280883.PubMedGoogle Scholar
  124. 124.
    Konstandin, M. H., Aksoy, H., Wabnitz, G. H., Volz, C., Erbel, C., Kirchgessner, H., Giannitsis, E., Katus, H. A., Samstag, Y., & Dengler, T. J. (2009). Beta2-integrin activation on T cell subsets is an independent prognostic factor in unstable angina pectoris. Basic Research in Cardiology, 104, 341–351. doi: 10.1007/s00395-008-0770-8.PubMedGoogle Scholar
  125. 125.
    Gidlof, O., van der Brug, M., Ohman, J., Gilje, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 121, 3908–3917. doi: 10.1182/blood-2012-10-461798.PubMedGoogle Scholar
  126. 126.
    O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G., & Baltimore, D. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 104, 1604–1609. doi: 10.1073/pnas.0610731104.PubMedGoogle Scholar
  127. 127.
    Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., Garcia, S., Nowak, J., Yeung, M. L., Jeang, K. T., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104, 16170–16175. doi: 10.1073/pnas.0703942104.PubMedGoogle Scholar
  128. 128.
    Vigorito, E., Perks, K. L., Abreu-Goodger, C., Bunting, S., Xiang, Z., Kohlhaas, S., Das, P. P., Miska, E. A., Rodriguez, A., Bradley, A., et al. (2007). MicroRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity, 27, 847–859. doi: 10.1016/j.immuni.2007.10.009.PubMedGoogle Scholar
  129. 129.
    Liu, J., van Mil, A., Vrijsen, K., Zhao, J., Gao, L., Metz, C. H., Goumans, M. J., Doevendans, P. A., & Sluijter, J. P. (2011). MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. Journal of Cellular and Molecular Medicine, 15, 1474–1482. doi: 10.1111/j.1582-4934.2010.01104.x.PubMedGoogle Scholar
  130. 130.
    Liu, J., van Mil, A., Aguor, E. N., Siddiqi, S., Vrijsen, K., Jaksani, S., Metz, C., Zhao, J., Strijkers, G. J., Doevendans, P. A., et al. (2012). MiR-155 inhibits cell migration of human cardiomyocyte progenitor cells (hCMPCs) via targeting of MMP-16. Journal of Cellular and Molecular Medicine, 16, 2379–2386. doi: 10.1111/j.1582-4934.2012.01551.x.PubMedGoogle Scholar
  131. 131.
    Johnnidis, J. B., Harris, M. H., Wheeler, R. T., Stehling-Sun, S., Lam, M. H., Kirak, O., Brummelkamp, T. R., Fleming, M. D., & Camargo, F. D. (2008). Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 451, 1125–1129. doi: 10.1038/nature06607.PubMedGoogle Scholar
  132. 132.
    Oerlemans, M., van Mil, A., Liu, J., van Eeuwijk, E., den Ouden, K., Doevendans, P., & Sluijter, J. (2012). Inhibition of miR-223 reduces inflammation but not adverse cardiac remodelling after myocardial ischemia-reperfusion in vivo. Discov Biol Med, 1, 3–10.Google Scholar
  133. 133.
    Taganov, K. D., Boldin, M. P., Chang, K. J., & Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 12481–12486. doi: 10.1073/pnas.0605298103.PubMedGoogle Scholar
  134. 134.
    Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., Rojas, M., Hammond, S. M., & Wang, D. Z. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42, 1137–1141. doi: 10.1016/j.yjmcc.2007.04.004.PubMedGoogle Scholar
  135. 135.
    Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984. doi: 10.1038/nature07511.PubMedGoogle Scholar
  136. 136.
    Li, C., Fang, Z., Jiang, T., Zhang, Q., Liu, C., Zhang, C., & Xiang, Y. (2013). Serum microRNAs profile from genom-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Medical Genomics, 6, 16. doi: 10.1186/1755-8794-6-16.PubMedGoogle Scholar
  137. 137.
    Gupta, S., Singh, K. N., Bapat, V., Mishra, V., Agarwal, D. K., & Gupta, P. (2008). Diagnosis of acute myocardial infarction: CK-MB versus cTn-T in Indian patients. Indian Journal of Clinical Biochemistry, 23, 89–91. doi: 10.1007/s12291-008-0021-7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. C. Deddens
    • 1
  • J. M. Colijn
    • 1
  • M. I. F. J. Oerlemans
    • 1
  • G. Pasterkamp
    • 1
  • S. A. Chamuleau
    • 1
  • P. A. Doevendans
    • 1
    • 2
  • J. P. G. Sluijter
    • 1
    • 2
  1. 1.Department of Cardiology, Division Heart and LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Netherlands Heart Institute (ICIN)UtrechtThe Netherlands

Personalised recommendations