Advertisement

Attenuation of Monocyte Chemotaxis—A Novel Anti-inflammatory Mechanism of Action for the Cardio-protective Hormone B-Type Natriuretic Peptide

  • Nadezhda Glezeva
  • Patrick Collier
  • Victor Voon
  • Mark Ledwidge
  • Kenneth McDonald
  • Chris Watson
  • John Baugh
Article

Abstract

B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.

Keywords

BNP NPRA RhoA Monocyte chemotaxis Calcium Hypertension Heart failure 

Notes

Acknowledgements

We are greatly thankful to Dr. Alfonso Blanco for his instruction and assistance with the calcium measurements. This work was funded by the Irish Research Council for Science, Engineering and Technology and the Health Research Board of Ireland (Dublin, Ireland).

Conflicts of Interest

The authors confirm that there are no conflicts of interest.

Supplementary material

12265_2013_9456_MOESM1_ESM.docx (252 kb)
ESM 1 (DOCX 252 kb)

References

  1. 1.
    Levine, B., Kalman, J., Mayer, L., Fillit, H. M., & Packer, M. (1990). Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. The New England Journal of Medicine, 323, 236–241.PubMedCrossRefGoogle Scholar
  2. 2.
    Torre-Amione, G., Kapadia, S., Lee, J., Durand, J. B., Bies, R. D., Young, J. B., et al. (1996). Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 93, 704–711.PubMedCrossRefGoogle Scholar
  3. 3.
    Candia, A. M., Villacorta, H., Jr., & Mesquita, E. T. (2007). Immune-inflammatory activation in heart failure. Arquivos Brasileiros de Cardiologia, 89(183–90), 201–208.Google Scholar
  4. 4.
    Nicoletti, A., Heudes, D., Mandet, C., Hinglais, N., Bariety, J., & Michel, J. B. (1996). Inflammatory cells and myocardial fibrosis: spatial and temporal distribution in renovascular hypertensive rats. Cardiovascular Research, 32, 1096–1107.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuwahara, F., Kai, H., Tokuda, K., Takeya, M., Takeshita, A., Egashira, K., et al. (2004). Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension, 43, 739–745.PubMedCrossRefGoogle Scholar
  6. 6.
    Westermann, D., Lindner, D., Kasner, M., Zietsch, C., Savvatis, K., Escher, F., et al. (2011). Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circulation: Heart Failure, 4, 44–52.CrossRefGoogle Scholar
  7. 7.
    Kai, H., Kuwahara, F., Tokuda, K., & Imaizumi, T. (2005). Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis. Hypertension Research, 28, 483–490.PubMedCrossRefGoogle Scholar
  8. 8.
    Xia, Y., Lee, K., Li, N., Corbett, D., Mendoza, L., & Frangogiannis, N. G. (2009). Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochemistry and Cell Biology, 131, 471–481.PubMedCrossRefGoogle Scholar
  9. 9.
    Ammarguellat, F. Z., Gannon, P. O., Amiri, F., & Schiffrin, E. L. (2002). Fibrosis, matrix metalloproteinases, and inflammation in the heart of DOCA-salt hypertensive rats: role of ET(A) receptors. Hypertension, 39, 679–684.PubMedCrossRefGoogle Scholar
  10. 10.
    Nicoletti, A., & Michel, J. B. (1999). Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovascular Research, 41, 532–543.PubMedCrossRefGoogle Scholar
  11. 11.
    Yndestad, A., Damas, J. K., Oie, E., Ueland, T., Gullestad, L., & Aukrust, P. (2006). Systemic inflammation in heart failure—the whys and wherefores. Heart Failure Reviews, 11, 83–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Gong, K. Z., Song, G., Spiers, J. P., Kelso, E. J., & Zhang, Z. G. (2007). Activation of immune and inflammatory systems in chronic heart failure: novel therapeutic approaches. International Journal of Clinical Practice, 61, 611–621.PubMedCrossRefGoogle Scholar
  13. 13.
    Fildes, J. E., Shaw, S. M., Yonan, N., & Williams, S. G. (2009). The immune system and chronic heart failure: is the heart in control? Journal of the American College of Cardiology, 53, 1013–1020.PubMedCrossRefGoogle Scholar
  14. 14.
    Heymans, S., Hirsch, E., Anker, S. D., Aukrust, P., Balligand, J. L., Cohen-Tervaert, J. W., et al. (2009). Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 11, 119–129.PubMedCrossRefGoogle Scholar
  15. 15.
    Steffens, S., Montecucco, F., & Mach, F. (2009). The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thrombosis and Haemostasis, 102, 240–247.PubMedGoogle Scholar
  16. 16.
    Nishikimi, T., Maeda, N., & Matsuoka, H. (2006). The role of natriuretic peptides in cardioprotection. Cardiovascular Research, 69, 318–328.PubMedCrossRefGoogle Scholar
  17. 17.
    Potter, L. R., Abbey-Hosch, S., Dickey, D. M., D'Souza, S. P., Davis, M., Baxter, G. F., et al. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine Reviews, 27, 47–72.PubMedCrossRefGoogle Scholar
  18. 18.
    D'Souza, S. P., Davis, M., & Baxter, G. F. (2004). Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacology and Therapeutics, 101, 113–129.PubMedCrossRefGoogle Scholar
  19. 19.
    Hama, N., Itoh, H., Shirakami, G., Nakagawa, O., Suga, S., Ogawa, Y., et al. (1995). Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation, 92, 1558–1564.PubMedCrossRefGoogle Scholar
  20. 20.
    Boomsma, F., & van den Meiracker, A. H. (2001). Plasma A- and B-type natriuretic peptides: physiology, methodology and clinical use. Cardiovascular Research, 51, 442–449.PubMedCrossRefGoogle Scholar
  21. 21.
    Cleland, J. G., Taylor, J., & Tendera, M. (2007). Prognosis in heart failure with a normal ejection fraction. The New England Journal of Medicine, 357, 829–830.PubMedCrossRefGoogle Scholar
  22. 22.
    Maisel, A. S., McCord, J., Nowak, R. M., Hollander, J. E., Wu, A. H., Duc, P., et al. (2003). Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. Journal of the American College of Cardiology, 41, 2010–2017.PubMedCrossRefGoogle Scholar
  23. 23.
    Phelan, D., Watson, C., Martos, R., Collier, P., Patle, A., Donnelly, S., et al. (2012). Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes. PloS One, 7, e49259.PubMedCrossRefGoogle Scholar
  24. 24.
    Maisel, A., Mueller, C., Adams, K., Jr., Anker, S. D., Aspromonte, N., Cleland, J. G., et al. (2008). State of the art: using natriuretic peptide levels in clinical practice. European Journal of Heart Failure, 10, 824–839.PubMedCrossRefGoogle Scholar
  25. 25.
    Fonarow, G. C. (2003). B-type natriuretic peptide: spectrum of application. Nesiritide (recombinant BNP) for heart failure. Heart Failure Reviews, 8, 321–325.PubMedCrossRefGoogle Scholar
  26. 26.
    McMurray, J. J. (2012). Heart failure in 2011: heart failure therapy—technology to the fore. Nature Reviews Cardiology, 9, 73–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen, H. H., Glockner, J. F., Schirger, J. A., Cataliotti, A., Redfield, M. M., & Burnett, J. C., Jr. (2012). Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. Journal of the American College of Cardiology, 60, 2305–2312.PubMedCrossRefGoogle Scholar
  28. 28.
    Solomon, S. D., Skali, H., Bourgoun, M., Fang, J., Ghali, J. K., Martelet, M., et al. (2005). Effect of angiotensin-converting enzyme or vasopeptidase inhibition on ventricular size and function in patients with heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) echocardiographic study. American Heart Journal, 150, 257–262.PubMedCrossRefGoogle Scholar
  29. 29.
    Tamura, N., Ogawa, Y., Chusho, H., Nakamura, K., Nakao, K., Suda, M., et al. (2000). Cardiac fibrosis in mice lacking brain natriuretic peptide. Proceedings of the National Academy of Sciences of the United States of America, 97, 4239–4244.PubMedCrossRefGoogle Scholar
  30. 30.
    Vellaichamy, E., Khurana, M. L., Fink, J., & Pandey, K. N. (2005). Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. Journal of Biological Chemistry, 280, 19230–19242.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuhn, M. (2005). Cardiac and intestinal natriuretic peptides: insights from genetically modified mice. Peptides, 26, 1078–1085.PubMedCrossRefGoogle Scholar
  32. 32.
    Vellaichamy, E., Kaur, K., & Pandey, K. N. (2007). Enhanced activation of pro-inflammatory cytokines in mice lacking natriuretic peptide receptor-A. Peptides, 28, 893–899.PubMedCrossRefGoogle Scholar
  33. 33.
    Giannessi, D., Colotti, C., Maltinti, M., Del Ry, S., Prontera, C., Turchi, S., et al. (2007). Circulating heat shock proteins and inflammatory markers in patients with idiopathic left ventricular dysfunction: their relationships with myocardial and microvascular impairment. Cell Stress & Chaperones, 12, 265–274.CrossRefGoogle Scholar
  34. 34.
    Vaz Perez, A., Doehner, W., von Haehling, S., Schmidt, H., Zimmermann, AV., Volk, HD., et al. (2009). The relationship between tumor necrosis factor-alpha, brain natriuretic peptide and atrial natriuretic peptide in patients with chronic heart failure. International Journal of Cardiology 141(1):39–43.Google Scholar
  35. 35.
    Collier, P., Watson, C. J., Voon, V., Phelan, D., Jan, A., Mak, G., et al. (2011). Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? European Journal of Heart Failure, 13, 1087–1095.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen, H. H., & Burnett, J. C., Jr. (1999). The natriuretic peptides in heart failure: diagnostic and therapeutic potentials. Proceedings of the Association of American Physicians, 111, 406–416.PubMedGoogle Scholar
  37. 37.
    Macheret, F., Heublein, D., Costello-Boerrigter, L. C., Boerrigter, G., McKie, P., Bellavia, D., et al. (2012). Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. Journal of the American College of Cardiology, 60, 1558–1565.PubMedCrossRefGoogle Scholar
  38. 38.
    Kawakami, R., Saito, Y., Kishimoto, I., Harada, M., Kuwahara, K., Takahashi, N., et al. (2004). Overexpression of brain natriuretic peptide facilitates neutrophil infiltration and cardiac matrix metalloproteinase-9 expression after acute myocardial infarction. Circulation, 110, 3306–3312.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuhn, M., Holtwick, R., Baba, H. A., Perriard, J. C., Schmitz, W., & Ehler, E. (2002). Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart, 87, 368–374.PubMedCrossRefGoogle Scholar
  40. 40.
    Oliver, P. M., Fox, J. E., Kim, R., Rockman, H. A., Kim, H. S., Reddick, R. L., et al. (1997). Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proceedings of the National Academy of Sciences of the United States of America, 94, 14730–14735.PubMedCrossRefGoogle Scholar
  41. 41.
    Kapoun, A. M., Liang, F., O'Young, G., Damm, D. L., Quon, D., White, R. T., et al. (2004). B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circulation Research, 94, 453–461.PubMedCrossRefGoogle Scholar
  42. 42.
    D'Souza, S. P., & Baxter, G. F. (2003). B Type natriuretic peptide: a good omen in myocardial ischaemia? Heart, 89, 707–709.PubMedCrossRefGoogle Scholar
  43. 43.
    Redfield, M. M., Jacobsen, S. J., Burnett, J. C., Jr., Mahoney, D. W., Bailey, K. R., & Rodeheffer, R. J. (2003). Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. Journal of the American Medical Association, 289, 194–202.PubMedCrossRefGoogle Scholar
  44. 44.
    Parekh, N., & Maisel, A. S. (2009). Utility of B-natriuretic peptide in the evaluation of left ventricular diastolic function and diastolic heart failure. Current Opinion in Cardiology, 24, 155–160.PubMedCrossRefGoogle Scholar
  45. 45.
    Lubien, E., DeMaria, A., Krishnaswamy, P., Clopton, P., Koon, J., Kazanegra, R., et al. (2002). Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation, 105, 595–601.PubMedCrossRefGoogle Scholar
  46. 46.
    Bennett, W. E., & Cohn, Z. A. (1966). The isolation and selected properties of blood monocytes. The Journal of Experimental Medicine, 123, 145–160.PubMedCrossRefGoogle Scholar
  47. 47.
    Huntley, B. K., Sandberg, S. M., Noser, J. A., Cataliotti, A., Redfield, M. M., Matsuda, Y., et al. (2006). BNP-induced activation of cGMP in human cardiac fibroblasts: interactions with fibronectin and natriuretic peptide receptors. Journal of Cellular Physiology, 209, 943–949.PubMedCrossRefGoogle Scholar
  48. 48.
    Worthylake, R. A., & Burridge, K. (2003). RhoA and ROCK promote migration by limiting membrane protrusions. Journal of Biological Chemistry, 278, 13578–13584.PubMedCrossRefGoogle Scholar
  49. 49.
    de Lemos, J. A., McGuire, D. K., & Drazner, M. H. (2003). B-type natriuretic peptide in cardiovascular disease. Lancet, 362, 316–322.PubMedCrossRefGoogle Scholar
  50. 50.
    Abulhul, E., McDonald, K., Martos, R., Phelan, D., Spiers, J. P., Hennessy, M., et al. (2012). Long-term statin therapy in patients with systolic heart failure and normal cholesterol: effects on elevated serum markers of collagen turnover, inflammation, and B-type natriuretic peptide. Clinical Therapeutics, 34, 91–100.PubMedCrossRefGoogle Scholar
  51. 51.
    Pivovarova, O., Gogebakan, O., Kloting, N., Sparwasser, A., Weickert, M. O., Haddad, I., et al. (2012). Insulin up-regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in obese subjects: a missing link between CVD risk and obesity? Journal of Clinical Endocrinology and Metabolism, 97, E731–E739.PubMedCrossRefGoogle Scholar
  52. 52.
    Chiurchiu, V., Izzi, V., D'Aquilio, F., Carotenuto, F., Di Nardo, P., & Baldini, P. M. (2008). Brain natriuretic peptide (BNP) regulates the production of inflammatory mediators in human THP-1 macrophages. Regulatory Peptides, 148, 26–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Shaw, SM., Critchley, WR., Puchalka, CM., Williams, SG., Yonan, N., Fildes, JE. (2011). Brain natriuretic peptide induces CD8+ T cell death via a caspase 3 associated pathway—implications following heart transplantation. Transplant immunology 26(2–3):119–22.Google Scholar
  54. 54.
    Capers, Q., Alexander, R. W., Lou, P., De Leon, H., Wilcox, J. N., Ishizaka, N., et al. (1997). Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension, 30, 1397–1402.PubMedCrossRefGoogle Scholar
  55. 55.
    Charo, I. F., & Taubman, M. B. (2004). Chemokines in the pathogenesis of vascular disease. Circulation Research, 95, 858–866.PubMedCrossRefGoogle Scholar
  56. 56.
    Ishibashi, M., Hiasa, K., Zhao, Q., Inoue, S., Ohtani, K., Kitamoto, S., et al. (2004). Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circulation Research, 94, 1203–1210.PubMedCrossRefGoogle Scholar
  57. 57.
    Frangogiannis, N. G., Dewald, O., Xia, Y., Ren, G., Haudek, S., Leucker, T., et al. (2007). Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation, 115, 584–592.PubMedCrossRefGoogle Scholar
  58. 58.
    Pryzwansky, K. B., Kidao, S., Wyatt, T. A., Reed, W., & Lincoln, T. M. (1995). Localization of cyclic GMP-dependent protein kinase in human mononuclear phagocytes. Journal of Leukocyte Biology, 57, 670–678.PubMedGoogle Scholar
  59. 59.
    Rolli-Derkinderen, M., Sauzeau, V., Boyer, L., Lemichez, E., Baron, C., Henrion, D., et al. (2005). Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circulation Research, 96, 1152–1160.PubMedCrossRefGoogle Scholar
  60. 60.
    Yao X. (2007). TRPC, cGMP-dependent protein kinases and cytosolic Ca2+. Handbook of Experimental Pharmacology 527–40.Google Scholar
  61. 61.
    Chen, J., Crossland, R. F., Noorani, M. M., & Marrelli, S. P. (2009). Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. American Journal of Physiology-Heart and Circulatory Physiology, 297, H417–H424.PubMedCrossRefGoogle Scholar
  62. 62.
    Kaibuchi, K., Kuroda, S., & Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annual Review of Biochemistry, 68, 459–486.PubMedCrossRefGoogle Scholar
  63. 63.
    Honing, H., van den Berg, T. K., van der Pol, S. M., Dijkstra, C. D., van der Kammen, R. A., Collard, J. G., et al. (2004). RhoA activation promotes transendothelial migration of monocytes via ROCK. Journal of Leukocyte Biology, 75, 523–528.PubMedCrossRefGoogle Scholar
  64. 64.
    Worthylake, R. A., Lemoine, S., Watson, J. M., & Burridge, K. (2001). RhoA is required for monocyte tail retraction during transendothelial migration. The Journal of Cell Biology, 154, 147–160.PubMedCrossRefGoogle Scholar
  65. 65.
    Fernandez-Tenorio, M., Porras-Gonzalez, C., Castellano, A., Del Valle-Rodriguez, A., Lopez-Barneo, J., & Urena, J. (2011). Metabotropic regulation of RhoA/Rho-associated kinase by l-type Ca2+ channels: new mechanism for depolarization-evoked mammalian arterial contraction. Circulation Research, 108, 1348–1357.PubMedCrossRefGoogle Scholar
  66. 66.
    Evans, J. H., & Falke, J. J. (2007). Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 104, 16176–16181.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu, D., Scholze, A., Zhu, Z., Krueger, K., Thilo, F., Burkert, A., et al. (2006). Transient receptor potential channels in essential hypertension. Journal of Hypertension, 24, 1105–1114.PubMedCrossRefGoogle Scholar
  68. 68.
    Liu, D. Y., Scholze, A., Kreutz, R., Wehland-von-Trebra, M., Zidek, W., Zhu, Z. M., et al. (2007). Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical type 3 channels. American Journal of Hypertension, 20, 1111–1118.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu, D., Scholze, A., Zhu, Z., Kreutz, R., Wehland-von-Trebra, M., Zidek, W., et al. (2005). Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. American Journal of Hypertension, 18, 1503–1507.PubMedCrossRefGoogle Scholar
  70. 70.
    Thilo, F., Scholze, A., Liu, D. Y., Zidek, W., & Tepel, M. (2008). Association of transient receptor potential canonical type 3 (TRPC3) channel transcripts with proinflammatory cytokines. Archives of Biochemistry and Biophysics, 471, 57–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Kinoshita, H., Kuwahara, K., Nishida, M., Jian, Z., Rong, X., Kiyonaka, S., et al. (2010). Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circulation Research, 106, 1849–1860.PubMedCrossRefGoogle Scholar
  72. 72.
    Yamaguchi, T., Olozak, I., Chattopadhyay, N., Butters, R. R., Kifor, O., Scadden, D. T., et al. (1998). Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes. Biochemical and Biophysical Research Communications, 246, 501–506.PubMedCrossRefGoogle Scholar
  73. 73.
    Olszak, I. T., Poznansky, M. C., Evans, R. H., Olson, D., Kos, C., Pollak, M. R., et al. (2000). Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. The Journal of Clinical Investigation, 105, 1299–1305.PubMedCrossRefGoogle Scholar
  74. 74.
    van Heerebeek, L., Hamdani, N., Falcao-Pires, I., Leite-Moreira, AF., Begieneman, MP., Bronzwaer, JG., et al. (2012). Low myocardial protein kinase g activity in heart failure with preserved ejection fraction. Circulation 126(7):830–839.Google Scholar
  75. 75.
    McMurray, JJ., Adamopoulos, S., Anker, SD., Auricchio, A., Bohm, M., Dickstein K, et al. (2012). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Heart Journal 33(14):1787–847.Google Scholar
  76. 76.
    Maisel, A. S., Krishnaswamy, P., Nowak, R. M., McCord, J., Hollander, J. E., Duc, P., et al. (2002). Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. The New England Journal of Medicine, 347, 161–167.PubMedCrossRefGoogle Scholar
  77. 77.
    Spinetti, G., Wang, M., Monticone, R., Zhang, J., Zhao, D., & Lakatta, E. G. (2004). Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1397–1402.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nadezhda Glezeva
    • 1
  • Patrick Collier
    • 1
    • 2
  • Victor Voon
    • 2
  • Mark Ledwidge
    • 2
  • Kenneth McDonald
    • 1
    • 2
  • Chris Watson
    • 1
    • 2
  • John Baugh
    • 1
  1. 1.School of Medicine and Medical Science, UCD Conway Institute for Biomolecular and Biomedical ResearchUniversity College DublinDublin 4Ireland
  2. 2.Heart Failure UnitSt. Vincent’s University Hospital Healthcare GroupDublinIreland

Personalised recommendations