Platelet Function Profiles in Patients with Diabetes Mellitus

  • Fabiana Rollini
  • Francesco Franchi
  • Ana Muñiz-Lozano
  • Dominick J Angiolillo
Article

Abstract

Patients with diabetes mellitus (DM) are at high risk for several cardiovascular disorders such as coronary heart disease, stroke, peripheral arterial disease, and congestive heart failure. DM has reached epidemic proportions and its strong association with coronary artery disease is responsible for increased cardiovascular morbidity and mortality. DM patients are characterized by platelet hyperreactivity, which contribute to the enhanced atherothrombotic risk of these subjects. Several mechanisms are involved in the hyperreactive platelet phenotype characterizing DM patients. Furthermore, a large proportion of DM patients show inadequate response to standard antiplatelet treatments and high rate of adverse recurrent cardiovascular events despite compliance with standard antiplatelet treatment regimens. Therefore, new antiplatelet treatment regimens are warranted in DM patients to reduce their atherothrombotic risk. The present manuscript provides an overview on the current status of knowledge on platelet function profiles in patients with DM and therapeutic considerations.

Keywords

Diabetes mellitus Platelets function Cardiovascular disease 

References

  1. 1.
    Inzucchi, S. E. (2012). Diagnosis of diabetes. The New England Journal of Medicine, 367, 542–550.CrossRefPubMedGoogle Scholar
  2. 2.
    Morel, O., Kessler, L., Ohlmann, P., & Bareiss, P. (2010). Diabetes and the platelet: toward new therapeutic paradigms for diabetic atherothrombosis. Atherosclerosis, 212, 367–376.CrossRefPubMedGoogle Scholar
  3. 3.
    Webster MW, Scott RS (1997) What cardiologists need to know about diabetes. Lancet 350 Suppl 1:SI23–8.Google Scholar
  4. 4.
    Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The New England Journal of Medicine, 339, 229–234.CrossRefPubMedGoogle Scholar
  5. 5.
    Malmberg, K., Yusuf, S., Gerstein, H. C., Brown, J., Zhao, F., Hunt, D., et al. (2000). Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation, 102, 1014–1019.CrossRefPubMedGoogle Scholar
  6. 6.
    Roffi, M., Chew, D. P., Mukherjee, D., Bhatt, D. L., White, J. A., Heeschen, C., et al. (2001). Platelet glycoprotein IIb/IIIa inhibitors reduce mortality in diabetic patients with non-ST-segment-elevation acute coronary syndromes. Circulation, 104, 2767–2771.CrossRefPubMedGoogle Scholar
  7. 7.
    Creager, M. A., Lüscher, T. F., Cosentino, F., & Beckman, J. A. (2003). Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation, 108, 1527–1532.CrossRefPubMedGoogle Scholar
  8. 8.
    Stratmann, B., & Tschoepe, D. (2005). Pathobiology and cell interactions of platelets in diabetes. Diabetes & Vascular Disease Research, 2, 16–23.CrossRefGoogle Scholar
  9. 9.
    Angiolillo, D. J., Fernandez-Ortiz, A., Bernardo, E., Ramírez, C., Sabaté, M., Jimenez-Quevedo, P., et al. (2005). Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes, 54, 2430–2435.CrossRefPubMedGoogle Scholar
  10. 10.
    Vinik, A. I., Erbas, T., Park, T. S., Nolan, R., & Pittenger, G. L. (2001). Platelet dysfunction in type 2 diabetes. Diabetes Care, 24, 1476–1485.CrossRefPubMedGoogle Scholar
  11. 11.
    Ferroni, P., Basili, S., Falco, A., & Davì, G. (2004). Platelet activation in type 2 diabetes mellitus. Journal of Thrombosis and Haemostasis, 2, 1282–1291.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferreiro, J. L., & Angiolillo, D. J. (2011). Diabetes and anti-platelet therapy in acute coronary syndrome. Circulation, 123, 798–813.CrossRefPubMedGoogle Scholar
  13. 13.
    Geisler, T., Anders, N., Paterok, M., Langer, H., Stellos, K., Lindemann, S., et al. (2007). Platelet response to clopidogrel is attenuated in diabetic patients undergoing coronary stent implantation. Diabetes Care, 30, 372–374.CrossRefPubMedGoogle Scholar
  14. 14.
    Davì, G., & Patrono, C. (2007). Platelet activation and atherothrombosis. The New England Journal of Medicine, 357, 2482–2494.CrossRefPubMedGoogle Scholar
  15. 15.
    Fuster, V., Moreno, P. R., Fayad, Z. A., Corti, R., & Badimon, J. J. (2005). Atherothrombosis and high-risk plaque: part I: evolving concepts. Journal of the American College of Cardiology, 46, 937–954.CrossRefPubMedGoogle Scholar
  16. 16.
    Schneider, D. J. (2009). Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care, 32, 525–527.CrossRefPubMedGoogle Scholar
  17. 17.
    Lemkes, B. A., Hermanides, J., Devries, J. H., Holleman, F., Meijers, J. C., & Hoekstra, J. B. (2010). Hyperglycaemia, a prothrombotic factor? Journal of Thrombosis and Haemostasis, 8, 1663–1669.CrossRefPubMedGoogle Scholar
  18. 18.
    Ferreiro, J. L., & Angiolillo, D. J. (2012). Challenges and perspectives of antiplatelet therapy in patients with diabetes mellitus and coronary artery disease. Current Pharmaceutical Design, 1, 5273–5293.CrossRefGoogle Scholar
  19. 19.
    Winocour, P. D., Watala, C., Perry, D. W., & Kinlough-Rathbone, R. L. (1992). Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins. Thrombosis and Haemostasis, 68, 577–582.PubMedGoogle Scholar
  20. 20.
    Watala, C., Golański, J., Boncler, M. A., Pietrucha, T., & Gwoździński, K. (1998). Membrane lipid fluidity of blood platelets: a common denominator that underlies the opposing actions of various agents that affect platelet activation in whole blood. Platelets, 9, 315–327.CrossRefPubMedGoogle Scholar
  21. 21.
    Chappey, O., Dosquet, C., Wautier, M. P., & Wautier, J. L. (1997). Advanced glycation end products, oxidant stress and vascular lesions. European Journal of Clinical Investigation, 27, 97–108.CrossRefPubMedGoogle Scholar
  22. 22.
    Assert, R., Scherk, G., Bumbure, A., Pirags, V., Schatz, H., & Pfeiffer, A. F. (2001). Regulation of protein kinase C by short term hyperglycaemia in human platelets in vivo and in vitro. Diabetologia, 44, 188–195.CrossRefPubMedGoogle Scholar
  23. 23.
    Xia, P., Inoguchi, T., Kern, T. S., Engerman, R. L., Oates, P. J., & King, G. L. (1994). Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes, 43, 1122–1129.CrossRefPubMedGoogle Scholar
  24. 24.
    Ferretti, G., Rabini, R. A., Bacchetti, T., Vignini, A., Salvolini, E., Ravaglia, F., et al. (2002). Glycated low density lipoproteins modify platelet properties: a compositional and functional study. Journal of Clinical Endocrinology and Metabolism, 87, 2180–2184.CrossRefPubMedGoogle Scholar
  25. 25.
    Williams, S. B., Goldfine, A. B., Timimi, F. K., Ting, H. H., Roddy, M. A., Simonson, D. C., et al. (1998). Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation, 97, 1695–1701.CrossRefPubMedGoogle Scholar
  26. 26.
    Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404, 787–790.CrossRefPubMedGoogle Scholar
  27. 27.
    Keating, F. K., Sobel, B. E., & Schneider, D. J. (2003). Effects of increased concentrations of glucose on platelet reactivity in healthy subjects and in patients with and without diabetes mellitus. The American Journal of Cardiology, 92, 1362–1365.CrossRefPubMedGoogle Scholar
  28. 28.
    Takada, Y., Urano, T., Watanabe, I., Taminato, A., Yoshimi, T., & Takada, A. (1993). Changes in fibrinolytic parameters in male patients with type 2 (non-insulin-dependent) diabetes mellitus. Thrombosis Research, 71, 405–415.CrossRefPubMedGoogle Scholar
  29. 29.
    Kessler, L., Wiesel, M. L., Attali, P., Mossard, J. M., Cazenave, J. P., & Pinget, M. (1998). Von Willebrand factor in diabetic angiopathy. Diabetes & Metabolism, 24, 327–336.Google Scholar
  30. 30.
    Boden, G., & Rao, A. K. (2007). Effects of hyperglycemia and hyperinsulinemia on the tissue factor pathway of blood coagulation. Current Diabetes Reports, 7, 223–227.CrossRefPubMedGoogle Scholar
  31. 31.
    Eibl, N., Krugluger, W., Streit, G., Schrattbauer, K., Hopmeier, P., & Schernthaner, G. (2004). Improved metabolic control decreases platelet activation markers in patients with type-2 diabetes. European Journal of Clinical Investigation, 34, 205–209.CrossRefPubMedGoogle Scholar
  32. 32.
    Vivas, D., García-Rubira, J. C., Bernardo, E., Angiolillo, D. J., Martín, P., Calle-Pascual, A., et al. (2011). Effects of intensive glucose control on platelet reactivity in patients with acute coronary syndromes. Results of the CHIPS Study ("Control de Hiperglucemia y Actividad Plaquetaria en Pacientes con Sindrome Coronario Agudo"). Heart, 97, 803–809.CrossRefPubMedGoogle Scholar
  33. 33.
    Malmberg, K. (1997). Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ, 314, 1512–1515.CrossRefPubMedGoogle Scholar
  34. 34.
    Malmberg, K., Rydén, L., Wedel, H., Birkeland, K., Bootsma, A., Dickstein, K., et al. (2005). Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. European Heart Journal, 26, 650–661.CrossRefPubMedGoogle Scholar
  35. 35.
    Gerstein, H. C., Miller, M. E., Byington, R. P., Goff, D. C., Jr., Bigger, J. T., Buse, J. B., et al. (2008). Effects of intensive glucose lowering in type 2 diabetes. The New England Journal of Medicine, 358, 2545–2559.CrossRefPubMedGoogle Scholar
  36. 36.
    Finfer, S., Chittock, D. R., Su, S. Y., Blair, D., Foster, D., Dhingra, V., et al. (2009). Intensive versus conventional glucose control in critically ill patients. The New England Journal of Medicine, 360, 1283–1297.CrossRefPubMedGoogle Scholar
  37. 37.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care (2010) 33:S62-S69.Google Scholar
  38. 38.
    Hajek, A. S., & Joist, J. H. (1992). Platelet insulin receptor. Methods in Enzymology, 215, 398–403.CrossRefPubMedGoogle Scholar
  39. 39.
    Hunter, R. W., & Hers, I. (2009). Insulin/IGF-1 hybrid receptor expression on human platelets: consequences for the effect of insulin on platelet function. Journal of Thrombosis and Haemostasis, 7, 2123–2130.CrossRefPubMedGoogle Scholar
  40. 40.
    Kahn, N. N. (1998). Insulin-induced expression of prostacyclin receptors on platelets is mediated through ADP-ribosylation of Gi alpha protein. Life Sciences, 63, 2031–2038.CrossRefPubMedGoogle Scholar
  41. 41.
    Randriamboavonjy, V., & Fleming, I. (2009). Insulin, insulin resistance, and platelet signaling in diabetes. Diabetes Care, 32, 528–530.CrossRefPubMedGoogle Scholar
  42. 42.
    Westerbacka, J., Yki-Järvinen, H., Turpeinen, A., Rissanen, A., Vehkavaara, S., Syrjälä, M., et al. (2002). Inhibition of platelet-collagen interaction: an in vivo action of insulin abolished by insulin resistance in obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 167–172.CrossRefPubMedGoogle Scholar
  43. 43.
    Angiolillo, D. J., Bernardo, E., Zanoni, M., Vivas, D., Capranzano, P., Malerba, G., et al. (2011). Impact of insulin receptor substrate-1 genotypes on platelet reactivity and cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. Journal of the American College of Cardiology, 58, 30–39.CrossRefPubMedGoogle Scholar
  44. 44.
    Ishida, M., Ishida, T., Ono, N., Matsuura, H., Watanabe, M., Kajiyama, G., et al. (1996). Effects of insulin on calcium metabolism and platelet aggregation. Hypertension, 28, 209–212.CrossRefPubMedGoogle Scholar
  45. 45.
    Betteridge, D. J., El Tahir, K. E., Reckless, J. P., & Williams, K. I. (1982). Platelets from diabetic subjects show diminished sensitivity to prostacyclin. European Journal of Clinical Investigation, 12, 395–398.CrossRefPubMedGoogle Scholar
  46. 46.
    Anfossi, G., Mularoni, E. M., Burzacca, S., Ponziani, M. C., Massucco, P., Mattiello, L., et al. (1998). Platelet resistance to nitrates in obesity and obese NIDDM, and normal platelet sensitivity to both insulin and nitrates in lean NIDDM. Diabetes Care, 21, 121–126.CrossRefPubMedGoogle Scholar
  47. 47.
    Russo, I., Traversa, M., Bonomo, K., De Salve, A., Mattiello, L., Del Mese, P., et al. (2010). In central obesity, weight loss restores platelet sensitivity to nitric oxide and prostacyclin. Obesity (Silver Spring), 18, 788–797.CrossRefGoogle Scholar
  48. 48.
    Randriamboavonjy, V., Pistrosch, F., Bölck, B., Schwinger, R. H., Dixit, M., Badenhoop, K., et al. (2008). Platelet sarcoplasmic endoplasmic reticulum Ca2 + −ATPase and mu-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. Circulation, 117, 52–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Sidhu, J. S., Cowan, D., Tooze, J. A., & Kaski, J. C. (2004). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. American Heart Journal, 147, e25.CrossRefPubMedGoogle Scholar
  50. 50.
    Nissen, S. E., Nicholls, S. J., Wolski, K., Nesto, R., Kupfer, S., Perez, A., et al. (2008). Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. Journal of the American Medical Association, 299, 1561–1573.CrossRefPubMedGoogle Scholar
  51. 51.
    McGuire, D. K., Newby, L. K., Bhapkar, M. V., Moliterno, D. J., Hochman, J. S., Klein, W. W., et al. (2004). Association of diabetes mellitus and glycemic control strategies with clinical outcomes after acute coronary syndromes. American Heart Journal, 147, 246–252.CrossRefPubMedGoogle Scholar
  52. 52.
    Gerstein, H. C., Ratner, R. E., Cannon, C. P., Serruys, P. W., García-García, H. M., van Es, G. A., et al. (2010). Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation, 121, 1176–1187.CrossRefPubMedGoogle Scholar
  53. 53.
    Suryadevara, S., Ueno, M., Tello-Montoliu, A., Ferreiro, J. L., Desai, B., Rollini, F., et al. (2012). Effects of pioglitazone on platelet P2Y12-mediated signalling in clopidogrel-treated patients with type 2 diabetes mellitus. Thrombosis and Haemostasis, 108, 930–936.CrossRefPubMedGoogle Scholar
  54. 54.
    Muscari, A., De Pascalis, S., Cenni, A., Ludovico, C., Castaldini, N., Antonelli, S., et al. (2008). Determinants of mean platelet volume (MPV) in an elderly population: relevance of body fat, blood glucose and ischaemic electrocardiographic changes. Thrombosis and Haemostasis, 99, 1079–1084.PubMedGoogle Scholar
  55. 55.
    Sugiyama, C., Ishizawa, M., Kajita, K., Morita, H., Uno, Y., Matsubara, K., et al. (2007). Platelet aggregation in obese and diabetic subjects: association with leptin level. Platelets, 18, 128–134.CrossRefPubMedGoogle Scholar
  56. 56.
    Scherrer, U., Nussberger, J., Torriani, S., Waeber, B., Darioli, R., Hofstetter, J. R., et al. (1991). Effect of weight reduction in moderately overweight patients on recorded ambulatory blood pressure and free cytosolic platelet calcium. Circulation, 83, 552–558.CrossRefPubMedGoogle Scholar
  57. 57.
    Anfossi, G., Russo, I., & Trovati, M. (2009). Platelet dysfunction in central obesity. Nutrition, Metabolism, and Cardiovascular Diseases, 19, 440–449.CrossRefPubMedGoogle Scholar
  58. 58.
    Angiolillo, D. J., Fernández-Ortiz, A., Bernardo, E., Barrera Ramírez, C., Sabaté, M., Fernandez, C., et al. (2004). Platelet aggregation according to body mass index in patients undergoing coronary stenting: should clopidogrel loading-dose be weight adjusted? The Journal of Invasive Cardiology, 16, 169–174.PubMedGoogle Scholar
  59. 59.
    Sibbing, D., von Beckerath, O., Schömig, A., Kastrati, A., & von Beckerath, N. (2007). Impact of body mass index on platelet aggregation after administration of a high loading dose of 600 mg of clopidogrel before percutaneous coronary intervention. The American Journal of Cardiology, 100, 203–205.CrossRefPubMedGoogle Scholar
  60. 60.
    Hochholzer, W., Trenk, D., Fromm, M. F., Valina, C. M., Stratz, C., Bestehorn, H. P., et al. (2010). Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. Journal of the American College of Cardiology, 55, 2427–2434.CrossRefPubMedGoogle Scholar
  61. 61.
    Olufadi, R., & Byrne, C. D. (2006). Effects of VLDL and remnant particles on platelets. Pathophysiology of Haemostasis and Thrombosis, 35, 281–291.CrossRefPubMedGoogle Scholar
  62. 62.
    Pedreño, J., Hurt-Camejo, E., Wiklund, O., Badimón, L., & Masana, L. (2000). Platelet function in patients with familial hypertriglyceridemia: evidence that platelet reactivity is modulated by apolipoprotein E content of very-low-density lipoprotein particles. Metabolism, 49, 942–949.CrossRefPubMedGoogle Scholar
  63. 63.
    Kuhn, F. E., Mohler, E. R., Satler, L. F., Reagan, K., Lu, D. Y., & Rackley, C. E. (1991). Effects of high-density lipoprotein on acetylcholine-induced coronary vasoreactivity. The American Journal of Cardiology, 68, 1425–1430.CrossRefPubMedGoogle Scholar
  64. 64.
    Calkin, A. C., Drew, B. G., Ono, A., Duffy, S. J., Gordon, M. V., Schoenwaelder, S. M., et al. (2009). Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation, 120, 2095–2104.CrossRefPubMedGoogle Scholar
  65. 65.
    Li, Y., Woo, V., & Bose, R. (2001). Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus. American Journal of Physiology. Heart and Circulatory Physiology, 280, H1480–489.PubMedGoogle Scholar
  66. 66.
    Mazzanti, L., Rabini, R. A., Faloia, E., Fumelli, P., Bertoli, E., & De Pirro, R. (1990). Altered cellular Ca2+ and Na + transport in diabetes mellitus. Diabetes, 39, 850–854.CrossRefPubMedGoogle Scholar
  67. 67.
    Schaeffer, G., Wascher, T. C., Kostner, G. M., & Graier, W. F. (1999). Alterations in platelet Ca2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production. Diabetologia, 42, 167–176.CrossRefPubMedGoogle Scholar
  68. 68.
    Ishii, H., Umeda, F., Hashimoto, T., & Nawata, H. (1991). Increased intracellular calcium mobilization in platelets from patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 34, 332–336.CrossRefPubMedGoogle Scholar
  69. 69.
    Freedman, J. E. (2008). Oxidative stress and platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, s11–16.CrossRefPubMedGoogle Scholar
  70. 70.
    Seghieri, G., Di Simplicio, P., Anichini, R., Alviggi, L., De Bellis, A., Bennardini, F., et al. (2001). Platelet antioxidant enzymes in insulin-dependent diabetes mellitus. Clinica Chimica Acta, 309, 19–23.CrossRefGoogle Scholar
  71. 71.
    Jardín, I., Redondo, P. C., Salido, G. M., Pariente, J. A., & Rosado, J. A. (2006). Endogenously generated reactive oxygen species reduce PMCA activity in platelets from patients with non-insulin-dependent diabetes mellitus. Platelets, 17, 283–288.CrossRefPubMedGoogle Scholar
  72. 72.
    Redondo, P. C., Jardin, I., Hernández-Cruz, J. M., Pariente, J. A., Salido, G. M., & Rosado, J. A. (2005). Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochemical and Biophysical Research Communications, 333, 794–802.CrossRefPubMedGoogle Scholar
  73. 73.
    Ahmed, N. (2005). Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67, 3–21.CrossRefPubMedGoogle Scholar
  74. 74.
    Hasegawa, Y., Suehiro, A., Higasa, S., Namba, M., & Kakishita, E. (2002). Enhancing effect of advanced glycation end products on serotonin-induced platelet aggregation in patients with diabetes mellitus. Thrombosis Research, 107, 319–323.CrossRefPubMedGoogle Scholar
  75. 75.
    Schmidt, A. M., Yan, S. D., Wautier, J. L., & Stern, D. (1999). Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circulation Research, 84, 489–497.CrossRefPubMedGoogle Scholar
  76. 76.
    Schäfer, A., & Bauersachs, J. (2008). Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Current Vascular Pharmacology, 6, 52–60.CrossRefPubMedGoogle Scholar
  77. 77.
    Kario, K., Matsuo, T., Kobayashi, H., Matsuo, M., Sakata, T., & Miyata, T. (1995). Activation of tissue factor-induced coagulation and endothelial cell dysfunction in non-insulin-dependent diabetic patients with microalbuminuria. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1114–1120.CrossRefPubMedGoogle Scholar
  78. 78.
    Tschoepe, D., Roesen, P., Esser, J., Schwippert, B., Nieuwenhuis, H. K., Kehrel, B., et al. (1991). Large platelets circulate in an activated state in diabetes mellitus. Seminars in Thrombosis and Hemostasis, 17, 433–438.CrossRefPubMedGoogle Scholar
  79. 79.
    Levine, G. N., Bates, E. R., Blankenship, J. C., et al. (2011). American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines; Society for Cardiovascular Angiography and Interventions. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Journal of the American College of Cardiology, 58, e44–122.CrossRefPubMedGoogle Scholar
  80. 80.
    Feit, F., Manoukian, S. V., Ebrahimi, R., Pollack, C. V., Ohman, E. M., Attubato, M. J., et al. (2008). Safety and efficacy of bivalirudin monotherapy in patients with diabetes mellitus and acute coronary syndromes: a report from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Journal of the American College of Cardiology, 51, 1645–1652.CrossRefPubMedGoogle Scholar
  81. 81.
    Davì, G., Catalano, I., Averna, M., Notarbartolo, A., Strano, A., Ciabattoni, G., et al. (1990). Thromboxane biosynthesis and platelet function in type II diabetes mellitus. The New England Journal of Medicine, 322, 1769–1774.CrossRefPubMedGoogle Scholar
  82. 82.
    Investigators, E. T. D. R. S. (1992). Aspirin effects on mortality and morbidity in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report 14. Journal of the American Medical Association, 268, 1292–300.CrossRefGoogle Scholar
  83. 83.
    Belch J, MacCuish A, Campbell I, Cobbe S, Taylor R, Prescott R, Lee R, Bancroft J, MacEwan S, Shepherd J, Macfarlane P, Morris A, Jung R, Kelly C, Connacher A, Peden N, Jamieson A, Matthews D, Leese G, McKnight J, O'Brien I, Semple C, Petrie J, Gordon D, Pringle S, MacWalter R; Prevention of Progression of Arterial Disease and Diabetes Study Group; Diabetes Registry Group; Royal College of Physicians Edinburgh (2008) The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 337:a1840.Google Scholar
  84. 84.
    Ogawa, H., Nakayama, M., Morimoto, T., Uemura, S., Kanauchi, M., Doi, N., et al. (2008). Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. Journal of the American Medical Association, 300, 2134–141.CrossRefPubMedGoogle Scholar
  85. 85.
    Rydén, L., Standl, E., Bartnik, M., et al. (2007). Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). European Heart Journal, 28, 88–136.CrossRefPubMedGoogle Scholar
  86. 86.
    Pignone, M., Alberts, M. J., Colwell, J. A., Cushman, M., Inzucchi, S. E., Mukherjee, D., et al. (2010). Aspirin for primary prevention of cardiovascular events in people with diabetes. Journal of the American College of Cardiology, 55, 2878–2886.CrossRefPubMedGoogle Scholar
  87. 87.
    O’Gara, P. T., Kushner, F. G., Ascheim, D. D., et al. (2013). ACCF/AHA guideline for the management of ST-elevation myocardial infarction. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. doi:10.1016/j.jacc.2012.11.019. 2012.
  88. 88.
    Anderson, J. L., Adams, C. D., Antman, E. M., et al. (2011). ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 123, e426–579.CrossRefPubMedGoogle Scholar
  89. 89.
    Roux, S., Christeller, S., & Lüdin, E. (1992). Effects of aspirin on coronary reocclusion and recurrent ischemia after thrombolysis: a meta-analysis. Journal of the American College of Cardiology, 19, 671–677.CrossRefPubMedGoogle Scholar
  90. 90.
    Antithrombotic Trialists' Collaboration. (2002). Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ, 324, 71–86.CrossRefGoogle Scholar
  91. 91.
    Snoep, J. D., Hovens, M. M., Eikenboom, J. C., van der Bom, J. G., & Huisman, M. V. (2007). Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: a systematic review and meta-analysis. Archives of Internal Medicine, 167, 1593–1599.CrossRefPubMedGoogle Scholar
  92. 92.
    Krasopoulos, G., Brister, S. J., Beattie, W. S., & Buchanan, M. R. (2008). Aspirin "resistance" and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ, 336, 195–198.CrossRefPubMedGoogle Scholar
  93. 93.
    Grove, E. L., Hvas, A. M., Johnsen, H. L., Hedegaard, S. S., Pedersen, S. B., Mortensen, J., et al. (2010). A comparison of platelet function tests and thromboxane metabolites to evaluate aspirin response in healthy individuals and patients with coronary artery disease. Thrombosis and Haemostasis, 103, 1245–1253.CrossRefPubMedGoogle Scholar
  94. 94.
    Guthikonda, S., Lev, E. I., Patel, R., DeLao, T., Bergeron, A. L., Dong, J. F., et al. (2007). Reticulated platelets and uninhibited COX-1 and COX-2 decrease the antiplatelet effects of aspirin. Journal of Thrombosis and Haemostasis, 5, 490–496.CrossRefPubMedGoogle Scholar
  95. 95.
    Cox, D., Maree, A. O., Dooley, M., Conroy, R., Byrne, M. F., & Fitzgerald, D. J. (2006). Effect of enteric coating on antiplatelet activity of low-dose aspirin in healthy volunteers. Stroke, 37, 2153–2158.CrossRefPubMedGoogle Scholar
  96. 96.
    Maree, A. O., Curtin, R. J., Chubb, A., Dolan, C., Cox, D., O'Brien, J., et al. (2005). Cyclooxygenase-1 haplotype modulates platelet response to aspirin. Journal of Thrombosis and Haemostasis, 3, 2340–2345.CrossRefPubMedGoogle Scholar
  97. 97.
    Catella-Lawson, F., Reilly, M. P., Kapoor, S. C., Cucchiara, A. J., DeMarco, S., Tournier, B., et al. (2001). Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. The New England Journal of Medicine, 345, 1809–1817.CrossRefPubMedGoogle Scholar
  98. 98.
    Cerbone, A. M., Macarone-Palmieri, N., Saldalamacchia, G., Coppola, A., Di Minno, G., & Rivellese, A. A. (2009). Diabetes, vascular complications and antiplatelet therapy: open problems. Acta Diabetologica, 46, 253–261.CrossRefPubMedGoogle Scholar
  99. 99.
    Storey, R. F., Newby, L. J., & Heptinstall, S. (2001). Effects of P2Y(1) and P2Y(12) receptor antagonists on platelet aggregation induced by different agonists in human whole blood. Platelets, 12, 443–447.CrossRefPubMedGoogle Scholar
  100. 100.
    Gachet, C. (2001). ADP receptors of platelets and their inhibition. Thrombosis and Haemostasis, 86, 222–232.PubMedGoogle Scholar
  101. 101.
    Turner, N. A., Moake, J. L., & McIntire, L. V. (2001). Blockade of adenosine diphosphate receptors P2Y(12) and P2Y(1) is required to inhibit platelet aggregation in whole blood under flow. Blood, 98, 3340–3345.CrossRefPubMedGoogle Scholar
  102. 102.
    Steering Committee, C. A. P. R. I. E. (1996). A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet, 348, 1329–1339.CrossRefGoogle Scholar
  103. 103.
    Bhatt, D. L., Marso, S. P., Hirsch, A. T., Ringleb, P. A., Hacke, W., & Topol, E. J. (2002). Amplified benefit of clopidogrel versus aspirin in patients with diabetes mellitus. The American Journal of Cardiology, 90, 625–628.CrossRefPubMedGoogle Scholar
  104. 104.
    Bhatt, D. L., Fox, K. A., Hacke, W., Berger, P. B., Black, H. R., Boden, W. E., et al. (2006). Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. The New England Journal of Medicine, 354, 1706–1717.CrossRefPubMedGoogle Scholar
  105. 105.
    Yusuf, S., Zhao, F., Mehta, S. R., Chrolavicius, S., Tognoni, G., Fox, K. K., et al. (2001). Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. The New England Journal of Medicine, 345, 494–502.CrossRefPubMedGoogle Scholar
  106. 106.
    Mehta, S. R., Yusuf, S., Peters, R. J., Bertrand, M. E., Lewis, B. S., Natarajan, M. K., et al. (2001). Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet, 358, 527–533.CrossRefPubMedGoogle Scholar
  107. 107.
    Steinhubl, S. R., Berger, P. B., Mann, J. T., 3rd, Fry, E. T., DeLago, A., Wilmer, C., et al. (2002). Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. Journal of the American Medical Association, 288, 2411–2420.CrossRefPubMedGoogle Scholar
  108. 108.
    Chen, Z. M., Jiang, L. X., Chen, Y. P., Xie, J. X., Pan, H. C., Peto, R., et al. (2005). Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet, 366, 1607–1621.CrossRefPubMedGoogle Scholar
  109. 109.
    Sabatine, M. S., Cannon, C. P., Gibson, C. M., López-Sendón, J. L., Montalescot, G., Theroux, P., et al. (2005). Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. The New England Journal of Medicine, 352, 1179–1189.CrossRefPubMedGoogle Scholar
  110. 110.
    Sabatine, M. S., Cannon, C. P., Gibson, C. M., López-Sendón, J. L., Montalescot, G., Theroux, P., et al. (2005). Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated with fibrinolytics: the PCI-CLARITY study. Journal of the American Medical Association, 294, 1224–1232.CrossRefPubMedGoogle Scholar
  111. 111.
    Angiolillo, D. J., Fernandez-Ortiz, A., Bernardo, E., Alfonso, F., Macaya, C., Bass, T. A., et al. (2007). Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. Journal of the American College of Cardiology, 49, 1505–1516.CrossRefPubMedGoogle Scholar
  112. 112.
    Ferreiro, J. L., & Angiolillo, D. J. (2009). Clopidogrel response variability: current status and future directions. Thrombosis and Haemostasis, 102, 7–14.PubMedGoogle Scholar
  113. 113.
    Angiolillo, D. J., & Ferreiro, J. L. (2010). Platelet adenosine diphosphate P2Y12 receptor antagonism: benefits and limitations of current treatment strategies and future directions. Revista Española de Cardiología, 63, 60–76.CrossRefPubMedGoogle Scholar
  114. 114.
    Serebruany, V., Pokov, I., Kuliczkowski, W., Chesebro, J., & Badimon, J. (2008). Baseline platelet activity and response after clopidogrel in 257 diabetics among 822 patients with coronary artery disease. Thrombosis and Haemostasis, 100, 76–82.PubMedGoogle Scholar
  115. 115.
    Angiolillo, D. J. (2009). Antiplatelet therapy in diabetes: efficacy and limitations of current treatment strategies and future directions. Diabetes Care, 32, 531–40.CrossRefPubMedGoogle Scholar
  116. 116.
    Matsuno, H., Tokuda, H., Ishisaki, A., Zhou, Y., Kitajima, Y., & Kozawa, O. (2005). P2Y12 receptors play a significant role in the development of platelet microaggregation in patients with diabetes. Journal of Clinical Endocrinology and Metabolism, 90, 920–927.CrossRefPubMedGoogle Scholar
  117. 117.
    Ueno, M., Ferreiro, J. L., Tomasello, S. D., Capodanno, D., Tello-Montoliu, A., Kodali, M., et al. (2011). Functional profile of the platelet P2Y12 receptor signalling pathway in patients with type 2 diabetes mellitus and coronary artery disease. Thrombosis and Haemostasis, 105, 730–732.CrossRefPubMedGoogle Scholar
  118. 118.
    Erlinge, D., Varenhorst, C., Braun, O. O., James, S., Winters, K. J., Jakubowski, J. A., et al. (2008). Patients with poor responsiveness to thienopyridine treatment or with diabetes have lower levels of circulating active metabolite, but their platelets respond normally to active metabolite added ex vivo. Journal of the American College of Cardiology, 52, 1968–1977.CrossRefPubMedGoogle Scholar
  119. 119.
    Ueno, M., Ferreiro, J. L., Desai, B., Tomasello, S. D., Tello-Montoliu, A., Capodanno, D., et al. (2012). Cigarette smoking is associated with a dose–response effect in clopidogrel-treated patients with diabetes mellitus and coronary artery disease: results of a pharmacodynamic study. JACC. Cardiovascular Interventions, 5, 293–300.CrossRefPubMedGoogle Scholar
  120. 120.
    Angiolillo, D. J., Bernardo, E., Ramírez, C., Costa, M. A., Sabaté, M., Jimenez-Quevedo, P., et al. (2006). Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. Journal of the American College of Cardiology, 48, 298–304.CrossRefPubMedGoogle Scholar
  121. 121.
    Angiolillo, D. J., Bernardo, E., Capodanno, D., Vivas, D., Sabaté, M., Ferreiro, J. L., et al. (2010). Impact of chronic kidney disease on platelet function profiles in diabetes mellitus patients with coronary artery disease on dual antiplatelet therapy. Journal of the American College of Cardiology, 55, 1139–1146.CrossRefPubMedGoogle Scholar
  122. 122.
    Angiolillo, D. J., Bernardo, E., Sabaté, M., Jimenez-Quevedo, P., Costa, M. A., Palazuelos, J., et al. (2007). Impact of platelet reactivity on cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. Journal of the American College of Cardiology, 50, 1541–1547.CrossRefPubMedGoogle Scholar
  123. 123.
    Iakovou, I., Schmidt, T., Bonizzoni, E., Ge, L., Sangiorgi, G. M., Stankovic, G., et al. (2005). Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. Journal of the American Medical Association, 293, 2126–2130.CrossRefPubMedGoogle Scholar
  124. 124.
    Urban, P., Gershlick, A. H., Guagliumi, G., Guyon, P., Lotan, C., Schofer, J., et al. (2006). Safety of coronary sirolimus-eluting stents in daily clinical practice: one-year follow-up of the e-Cypher registry. Circulation, 113, 1434–1441.CrossRefPubMedGoogle Scholar
  125. 125.
    Kuchulakanti, P. K., Chu, W. W., Torguson, R., Ohlmann, P., Rha, S. W., Clavijo, L. C., et al. (2006). Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus- and paclitaxel-eluting stents. Circulation, 113, 1108–1113.CrossRefPubMedGoogle Scholar
  126. 126.
    Michno, A., Bielarczyk, H., Pawełczyk, T., Jankowska-Kulawy, A., Klimaszewska, J., & Szutowicz, A. (2007). Alterations of adenine nucleotide metabolism and function of blood platelets in patients with diabetes. Diabetes, 56, 462–467.CrossRefPubMedGoogle Scholar
  127. 127.
    Guthikonda, S., Alviar, C. L., Vaduganathan, M., Arikan, M., Tellez, A., DeLao, T., et al. (2008). Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. Journal of the American College of Cardiology, 52, 743–749.CrossRefPubMedGoogle Scholar
  128. 128.
    DiChiara, J., Bliden, K. P., Tantry, U. S., Hamed, M. S., Antonino, M. J., Suarez, T. A., et al. (2007). The effect of aspirin dosing on platelet function in diabetic and nondiabetic patients: an analysis from the aspirin-induced platelet effect (ASPECT) study. Diabetes, 56, 3014–3019.CrossRefPubMedGoogle Scholar
  129. 129.
    CURRENT-OASIS 7 Investigators, Mehta, S. R., Bassand, J. P., Chrolavicius, S., Diaz, R., Eikelboom, J. W., et al. (2010). Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. The New England Journal of Medicine, 363, 930–942.CrossRefPubMedGoogle Scholar
  130. 130.
    Angiolillo, D. J. (2009). Variability in responsiveness to oral antiplatelet therapy. The American Journal of Cardiology, 103(3 Suppl), 27A–34A.CrossRefPubMedGoogle Scholar
  131. 131.
    Capodanno, D., Patel, A., Dharmashankar, K., Ferreiro, J. L., Ueno, M., Kodali, M., et al. (2011). Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circulation. Cardiovascular Interventions, 4, 180–187.CrossRefPubMedGoogle Scholar
  132. 132.
    Rocca, B., Santilli, F., Pitocco, D., Mucci, L., Petrucci, G., Vitacolonna, E., et al. (2012). The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. Journal of Thrombosis and Haemostasis, 10, 1220–1230.CrossRefPubMedGoogle Scholar
  133. 133.
    Di Minno, G., Silver, M. J., Cerbone, A. M., & Murphy, S. (1986). Trial of repeated low-dose aspirin in diabetic angiopathy. Blood, 68, 886–891.Google Scholar
  134. 134.
    Angiolillo, D. J., Shoemaker, S. B., Desai, B., Yuan, H., Charlton, R. K., Bernardo, E., et al. (2007). Randomized comparison of a high clopidogrel maintenance dose in patients with diabetes mellitus and coronary artery disease: results of the Optimizing Antiplatelet Therapy in Diabetes Mellitus (OPTIMUS) study. Circulation, 115, 708–716.CrossRefPubMedGoogle Scholar
  135. 135.
    Mehta, S. R., Tanguay, J. F., Eikelboom, J. W., Jolly, S. S., Joyner, C. D., Granger, C. B., et al. (2010). Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet, 376, 1233–1243.CrossRefPubMedGoogle Scholar
  136. 136.
    Price, M. J., Berger, P. B., Teirstein, P. S., Tanguay, J. F., Angiolillo, D. J., Spriggs, D., et al. (2011). Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. Journal of the American Medical Association, 305, 1097–1105.CrossRefPubMedGoogle Scholar
  137. 137.
    Collet, J. P., Cuisset, T., Rangé, G., Cayla, G., Elhadad, S., Pouillot, C., et al. (2012). Bedside monitoring to adjust antiplatelet therapy for coronary stenting. The New England Journal of Medicine, 367, 2100–2109.CrossRefPubMedGoogle Scholar
  138. 138.
    Angiolillo, D. J., Capodanno, D., & Goto, S. (2010). Platelet thrombin receptor antagonism and atherothrombosis. European Heart Journal, 31, 17–28.CrossRefPubMedGoogle Scholar
  139. 139.
    Mortensen, S. B., Larsen, S. B., Grove, E. L., Kristensen, S. D., & Hvas, A. M. (2010). Reduced platelet response to aspirin in patients with coronary artery disease and type 2 diabetes mellitus. Thrombosis Research, 126, e318–322.CrossRefPubMedGoogle Scholar
  140. 140.
    Fontana, P., Alberts, P., Sakariassen, K. S., Bounameaux, H., Meyer, J. P., & Santana Sorensen, A. (2011). The dual thromboxane receptor antagonist and thromboxane synthase inhibitor EV-077 is a more potent inhibitor of platelet function than aspirin. Journal of Thrombosis and Haemostasis, 9, 2109–2111.CrossRefPubMedGoogle Scholar
  141. 141.
    American Heart Association (1994) Randomized trial of ridogrel, a combined thromboxane A2 synthase inhibitor and thromboxane A2/prostaglandin endoperoxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. The Ridogrel Versus Aspirin Patency Trial (RAPT). Circulation 89:588–595.Google Scholar
  142. 142.
    Gresele, P., Migliacci, R., Procacci, A., De Monte, P., & Bonizzoni, E. (2007). Prevention by NCX 4016, a nitric oxide-donating aspirin, but not by aspirin, of the acute endothelial dysfunction induced by exercise in patients with intermittent claudication. Thrombosis and Haemostasis, 97, 444–450.PubMedGoogle Scholar
  143. 143.
    Kariyazono, H., Nakamura, K., Arima, J., Ayukawa, O., Onimaru, S., Masuda, H., et al. (2004). Evaluation of anti-platelet aggregatory effects of aspirin, cilostazol and ramatroban on platelet-rich plasma and whole blood. Blood Coagulation & Fibrinolysis, 15, 157–167.CrossRefGoogle Scholar
  144. 144.
    Neri Serneri, G. G., Coccheri, S., Marubini, E., & Violi, F. (2004). Drug Evaluation in Atherosclerotic Vascular Disease in Diabetics (DAVID) Study Group. Picotamide, a combined inhibitor of thromboxane A2 synthase and receptor, reduces 2-year mortality in diabetics with peripheral arterial disease: the DAVID study. European Heart Journal, 25, 1845–1852.CrossRefPubMedGoogle Scholar
  145. 145.
    Angiolillo, D. J., & Capranzano, P. (2008). Pharmacology of emerging novel platelet inhibitors. American Heart Journal, 156(2 Suppl), S10–15.CrossRefPubMedGoogle Scholar
  146. 146.
    Angiolillo, D. J., Badimon, J. J., Saucedo, J. F., Frelinger, A. L., Michelson, A. D., Jakubowski, J. A., et al. (2011). A pharmacodynamic comparison of prasugrel vs. high-dose clopidogrel in patients with type 2 diabetes mellitus and coronary artery disease: results of the Optimizing anti-Platelet Therapy In diabetes MellitUS (OPTIMUS)-3 Trial. European Heart Journal, 32, 838–846.CrossRefPubMedGoogle Scholar
  147. 147.
    Wiviott, S. D., Braunwald, E., McCabe, C. H., Montalescot, G., Ruzyllo, W., Gottlieb, S., et al. (2007). Prasugrel versus clopidogrel in patients with acute coronary syndromes. The New England Journal of Medicine, 357, 2001–2015.CrossRefPubMedGoogle Scholar
  148. 148.
    Montalescot, G., Wiviott, S. D., Braunwald, E., Murphy, S. A., Gibson, C. M., McCabe, C. H., et al. (2009). Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial. Lancet, 373, 723–731.CrossRefPubMedGoogle Scholar
  149. 149.
    Wiviott, S. D., Braunwald, E., Angiolillo, D. J., Meisel, S., Dalby, A. J., Verheugt, F. W., et al. (2008). Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation, 118, 1626–1636.CrossRefPubMedGoogle Scholar
  150. 150.
    Capodanno, D., Dharmashankar, K., & Angiolillo, D. J. (2010). Mechanism of action and clinical development of ticagrelor, a novel platelet ADP P2Y12 receptor antagonist. Expert Review of Cardiovascular Therapy, 8, 151–158.CrossRefPubMedGoogle Scholar
  151. 151.
    Angiolillo, D. J., & Ueno, M. (2011). Optimizing platelet inhibition in clopidogrel poor metabolizers: therapeutic options and practical considerations. JACC. Cardiovascular Interventions, 4, 411–414.CrossRefPubMedGoogle Scholar
  152. 152.
    Gurbel, P. A., Bliden, K. P., Butler, K., Tantry, U. S., Gesheff, T., Wei, C., et al. (2009). Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation, 120, 2577–2585.CrossRefPubMedGoogle Scholar
  153. 153.
    Storey, R. F., Husted, S., Harrington, R. A., Heptinstall, S., Wilcox, R. G., Peters, G., et al. (2007). Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. Journal of the American College of Cardiology, 50, 1852–1856.CrossRefPubMedGoogle Scholar
  154. 154.
    Wallentin, L., Becker, R. C., Budaj, A., Cannon, C. P., Emanuelsson, H., Held, C., et al. (2009). Ticagrelor versus Clopidogrel in Patients with Acute Coronary Syndromes. The New England Journal of Medicine, 361, 1–13.CrossRefGoogle Scholar
  155. 155.
    James, S., Angiolillo, D. J., Cornel, J. H., Erlinge, D., Husted, S., Kontny, F., et al. (2010). Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. European Heart Journal, 31, 3006–3116.CrossRefPubMedGoogle Scholar
  156. 156.
    Ferreiro, J. L., Ueno, M., & Angiolillo, D. J. (2009). Cangrelor: a review on its mechanism of action and clinical development. Expert Review of Cardiovascular Therapy, 7, 1195–1201.CrossRefPubMedGoogle Scholar
  157. 157.
    Storey, R. F., Wilcox, R. G., & Heptinstall, S. (2002). Comparison of the pharmacodynamic effects of the platelet ADP receptor antagonists clopidogrel and AR-C69931MX in patients with ischaemic heart disease. Platelets, 13, 407–413.CrossRefPubMedGoogle Scholar
  158. 158.
    Ferreiro JL, Ueno M, Tello-Montoliu A, Tomasello SD, Capodanno D, Capranzano P, Dharmashankar K, Darlington A, Desai B, Rollini F, Guzman LA, Bass TA, Angiolillo DJ (2012) Effects of cangrelor in coronary artery disease patients with and without diabetes mellitus: an in vitro pharmacodynamic investigation. Journal of Thrombosis and Thrombolysis, 35, 155–164.Google Scholar
  159. 159.
    Harrington, R. A., Stone, G. W., McNulty, S., White, H. D., Lincoff, A. M., Gibson, C. M., et al. (2009). Platelet inhibition with Cangrelor in patients undergoing PCI. The New England Journal of Medicine, 361, 2318–2329.CrossRefPubMedGoogle Scholar
  160. 160.
    Bhatt, D. L., Lincoff, A. M., Gibson, C. M., Stone, G. W., McNulty, S., Montalescot, G., et al. (2009). Intravenous Platelet Blockade with Cangrelor during PCI. The New England Journal of Medicine, 361, 2330–2341.CrossRefPubMedGoogle Scholar
  161. 161.
    Berger, J. S., Roe, M. T., Gibson, C. M., Kilaru, R., Green, C. L., Melton, L., et al. (2009). Safety and feasibility of adjunctive antiplatelet therapy with intravenous elinogrel, a direct-acting and reversible P2Y12 ADP-receptor antagonist, before primary percutaneous intervention in patients with ST-elevation myocardial infarction: the Early Rapid ReversAl of platelet thromboSis with intravenous Elinogrel before PCI to optimize reperfusion in acute Myocardial Infarction (ERASE MI) pilot trial. American Heart Journal, 158, 998–1004.CrossRefPubMedGoogle Scholar
  162. 162.
    Ueno, M., Rao, S. V., & Angiolillo, D. J. (2010). Elinogrel: pharmacological principles, preclinical and early phase clinical testing. Future Cardiology, 6, 445–453.CrossRefPubMedGoogle Scholar
  163. 163.
    Welsh, R. C., Rao, S. V., Zeymer, U., Thompson, V. P., Huber, K., Kochman, J., et al. (2012). A randomized, double-blind, active-controlled phase 2 trial to evaluate a novel selective and reversible intravenous and oral P2Y12 inhibitor elinogrel versus clopidogrel in patients undergoing nonurgent percutaneous coronary intervention: the INNOVATE-PCI trial. Circulation. Cardiovascular Interventions, 5, 336–346.CrossRefPubMedGoogle Scholar
  164. 164.
    Angiolillo, D. J., Welsh, R. C., Trenk, D., Neumann, F. J., Conley, P. B., McClure, M. W., et al. (2012). Pharmacokinetic and pharmacodynamic effects of elinogrel: results of the platelet function substudy from the intravenous and oral administration of elinogrel to evaluate tolerability and efficacy in nonurgent percutaneous coronary intervention patients (INNOVATE-PCI) trial. Circulation. Cardiovascular Interventions, 5, 347–356.CrossRefPubMedGoogle Scholar
  165. 165.
    Angiolillo, D. J., Capranzano, P., Ferreiro, J. L., Ueno, M., Capodanno, D., Dharmashankar, K., et al. (2011). Impact of adjunctive cilostazol therapy on platelet function profiles in patients with and without diabetes mellitus on aspirin and clopidogrel therapy. Thrombosis and Haemostasis, 106, 253–262.CrossRefPubMedGoogle Scholar
  166. 166.
    Jeong, Y. H., Lee, S. W., Choi, B. R., Kim, I. S., Seo, M. K., Kwak, C. H., et al. (2009). Randomized comparison of adjunctive cilostazol versus high maintenance dose clopidogrel in patients with high post-treatment platelet reactivity: results of the ACCEL-RESISTANCE (Adjunctive Cilostazol Versus High Maintenance Dose Clopidogrel in Patients With Clopidogrel Resistance) randomized study. Journal of the American College of Cardiology, 53, 1101–1109.CrossRefPubMedGoogle Scholar
  167. 167.
    Ferreiro, J. L., Ueno, M., Desai, B., Capranzano, P., Capodanno, D., & Angiolillo, D. J. (2012). Impact of adjunctive cilostazol therapy versus high maintenance dose of clopidogrel in suboptimal responders with diabetes mellitus. Rev Esp Cardiol (Engl)., 65, 105–106.CrossRefGoogle Scholar
  168. 168.
    Capranzano, P., Ferreiro, J. L., Ueno, M., Capodanno, D., Dharmashankar, K., Darlington, A., et al. (2012). Pharmacodynamic effects of adjunctive cilostazol therapy in patients with coronary artery disease on dual antiplatelet therapy: Impact of high on-treatment platelet reactivity and diabetes mellitus status. Catheterization and Cardiovascular Interventions. doi:10.1002/ccd.24416.
  169. 169.
    Angiolillo, D. J., Capranzano, P., Goto, S., Aslam, M., Desai, B., Charlton, R. K., et al. (2008). A randomized study assessing the impact of cilostazol on platelet function profiles in patients with diabetes mellitus and coronary artery disease on dual antiplatelet therapy: results of the OPTIMUS-2 study. European Heart Journal, 29, 2202–2211.CrossRefPubMedGoogle Scholar
  170. 170.
    Lee, S. W., Park, S. W., Kim, Y. H., Yun, S. C., Park, D. W., Lee, C. W., et al. (2008). Drug-eluting stenting followed by cilostazol treatment reduces late restenosis in patients with diabetes mellitus the DECLARE-DIABETES Trial (A Randomized Comparison of Triple Antiplatelet Therapy with Dual Antiplatelet Therapy After Drug-Eluting Stent Implantation in Diabetic Patients). Journal of the American College of Cardiology, 51, 1181–1187.CrossRefPubMedGoogle Scholar
  171. 171.
    Morrow, D. A., Braunwald, E., Bonaca, M. P., Ameriso, S. F., Dalby, A. J., Fish, M. P., et al. (2012). Vorapaxar in the secondary prevention of atherothrombotic events. The New England Journal of Medicine, 366, 1404–413.CrossRefPubMedGoogle Scholar
  172. 172.
    Tricoci, P., Huang, Z., Held, C., The TRACER Investigators, et al. (2012). Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. The New England Journal of Medicine, 366, 20–33.CrossRefPubMedGoogle Scholar
  173. 173.
    De Caterina, R., Husted, S., Wallentin, L., Andreotti, F., Arnesen, H., Bachmann, F., et al. (2012). New oral anticoagulants in atrial fibrillation and acute coronary syndromes: ESC Working Group on Thrombosis-Task Force on Anticoagulants in Heart Disease position paper. Journal of the American College of Cardiology, 59, 1413–1425.CrossRefPubMedGoogle Scholar
  174. 174.
    Mega, J. L., Braunwald, E., Wiviott, S. D., Bassand, J. P., Bhatt, D. L., Bode, C., et al. (2012). Rivaroxaban in patients with a recent acute coronary syndrome. The New England Journal of Medicine, 366, 9–19.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fabiana Rollini
    • 1
  • Francesco Franchi
    • 1
  • Ana Muñiz-Lozano
    • 1
  • Dominick J Angiolillo
    • 1
  1. 1.University of Florida College of Medicine-JacksonvilleJacksonvilleUSA

Personalised recommendations