The Clinical Anatomy and Pathology of the Human Atrioventricular Valves: Implications for Repair or Replacement

  • Michael G. Bateman
  • Jason L. Quill
  • Alexander J. Hill
  • Paul A. Iaizzo


A critical understanding of cardiac anatomy is essential for design engineers and clinicians with the intent of developing and/or employing improved or novel technologies or therapies for treating an impaired atrioventricular valve. Likewise, such knowledge is required for directing translational research, including initiating preclinical research, assessing the feasibility of clinical trials, and performing first-in-man procedures. There are two atrioventricular valves in the human heart, namely the tricuspid and mitral valves. Both are complex structures whose normal anatomies can vary greatly amongst individuals, and also become modified by disease processes. In this review, we discuss the anatomy, pathology, and issues related to surgical and transcatheter repair of the atrioventricular valves in a translational manner. This article is part of a JCTR special issue on Cardiac Anatomy.


Tricuspid valve Mitral valve Valve prolapse Regurgitation Stenosis Valve nomenclature Valve anatomy Valve repair Valve replacement 


  1. 1.
    Wilcox, B. R., Cook, A. C., & Anderson, R. H. (2005). Surgical anatomy of the valves of the heart. In B. R. Wilcox, A. C. Cook AC, & R. H. Anderson (Eds.), Surgical anatomy of the heart (pp. 45–82). Cambridge: Cambridge University Press.Google Scholar
  2. 2.
    Perloff, J. K., & Roberts, W. C. (1972). The mitral apparatus. Functional anatomy of mitral regurgitation. Circulation, 46, 227–239.CrossRefGoogle Scholar
  3. 3.
    Quill, J. L., Hill, A. J., Laske, T. G., et al. (2009). Mitral leaflet anatomy revisited. The Journal of Thoracic and Cardiovascular Surgery, 137, 1077–1081.CrossRefGoogle Scholar
  4. 4.
    Barker, T. A., & Wilson, I. C. (2011). Surgical anatomy of the mitral and tricuspid valve. In R. S. Bonser, D. Pagano, & A. Haverich (Eds.), Mitral valve surgery (pp. 3–19). London: Springer-Verlag.Google Scholar
  5. 5.
    Van Miegham, N. M., Piazza, N., Anderson, R. H., et al. (2010). Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation. Journal of the American College of Cardiology, 56, 617–626.CrossRefGoogle Scholar
  6. 6.
    Cook, A. C., & Anderson, R. H. (2002). Attitudinally correct nomenclature. Heart, 87, 503–506.CrossRefGoogle Scholar
  7. 7.
    Hill, A. J. (2009). Attitudinally correct cardiac anatomy. In P. A. Iaizzo (Ed.), The handbook of cardiac anatomy, physiology, and devices (2nd ed., pp. 15–21). Totowa: Humana Press.CrossRefGoogle Scholar
  8. 8.
    Anderson, R.H., et al. (2012). Standardized terms and positions for description of cardiac anatomy. Journal of Cardiovascular Translational Research.Google Scholar
  9. 9.
    Bateman, M.G., et al. (2012). The clinical anatomy of the human arterial valves: implications for repair or replacement. Journal of Cardiovascular Translational Research.Google Scholar
  10. 10.
    Ho, S. Y. (2002). Anatomy of the mitral valve. Heart, 88(Suppl iv), 5–10.Google Scholar
  11. 11. Accessed 20 Aug 2012.
  12. 12.
    Angelini, A., Ho, S. Y., Anderson, R. H., et al. (1988). A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. British Heart Journal, 59, 712–716.CrossRefGoogle Scholar
  13. 13.
    Messer, S., Moseley, E., Marinescu, M., et al. (2012). Histologic analysis of the right atrioventricular junction in the adult human heart. The Journal of Heart Valve Disease, 21, 368–373.Google Scholar
  14. 14.
    Anderson, R. H., Becker, A. E., & Allwork, S. P. (1980). Cardiac anatomy: An integrated text and colour atlas. Edinburgh: Gower Medical Publishing; London: Churchill Livingstone.Google Scholar
  15. 15.
    Victor, S., & Nayak, V. M. (1994). The tricuspid valve is bicuspid. The Journal of Heart Valve Disease, 3, 27–36.Google Scholar
  16. 16.
    Yacoub, M. (1976). Anatomy of the mitral valve chordae and cusps. In D. Kalmason (Ed.), The mitral valve. A pluridisciplinary approach (pp. 15–20). London: Edward Arnold Publishers.Google Scholar
  17. 17.
    Kumar, N., Kumar, M., & Duran, C. M. (1995). A revised terminology for recording surgical findings of the mitral valve. The Journal of Heart Valve Disease, 4, 76–77.Google Scholar
  18. 18.
    Silver, M. D., Lam, J. H., Ranganathan, N., et al. (1971). Morphology of the human tricuspid valve. Circulation, 43, 333–348.CrossRefGoogle Scholar
  19. 19.
    Anderson, R. H., Razavi, R., & Taylor, A. M. (2004). Cardiac anatomy revisited. Journal of Anatomy, 205, 159–177.CrossRefGoogle Scholar
  20. 20.
    Asante-Korang, A., O’Leary, P. W., & Anderson, R. H. (2006). Anatomy and echocardiography of the normal and abnormal mitral valve. Cardiology in the Young, 16(Suppl 3), 27–34.CrossRefGoogle Scholar
  21. 21.
    Carpentier, A., Branchini, B., Cour, J. C., et al. (1976). Congenital malformations of the mitral valve in children. Pathology and surgical treatment. The Journal of Thoracic and Cardiovascular Surgery, 72, 854–866.Google Scholar
  22. 22.
    Martinez, R. M., O’Leary, P. W., & Anderson, R. H. (2006). Anatomy and echocardiography of the normal and abnormal tricuspid valve. Cardiology in the Young, 16(Suppl 3), 4–11.CrossRefGoogle Scholar
  23. 23.
    Weinhaus, A. J., & Roberts, K. P. (2009). Anatomy of the human heart. In P. A. Iaizzo (Ed.), The handbook of cardiac anatomy, physiology, and devices (2nd ed., pp. 59–85). Totowa: Humana Press.CrossRefGoogle Scholar
  24. 24.
    Gams, E., Hagl, S., Schad, H., et al. (1992). Importance of the mitral apparatus for left ventricular function: an experimental approach. European Journal of Cardio-Thoracic Surgery, 6(Suppl 1), S17–S23. discussion S24.CrossRefGoogle Scholar
  25. 25.
    Gams, E., Schad, H., Heimisch, W., et al. (1993). Importance of the left ventricular subvalvular apparatus for cardiac performance. The Journal of Heart Valve Disease, 2, 642–645.Google Scholar
  26. 26.
    Delgado, V., Tops, L. F., Schuijf, J. D., et al. (2009). Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC. Cardiovascular Imaging, 2, 556–565.CrossRefGoogle Scholar
  27. 27.
    Berdajs, D., Lajos, P., & Turina, M. I. (2005). A new classification of the mitral papillary muscle. Medical Science Monitor, 11, BR18–BR21.Google Scholar
  28. 28.
    Bateman, M. G., Russel, C., Chan, B., et al. (2010). A detailed anatomical study of the papillary muscles and chordae tendineae of the left ventricle in perfusion fixed human hearts. The FASEB Journal, 24(Meeting Abstract Supplement), 446.4.Google Scholar
  29. 29.
    Wenink, A. C. (1977). The medial papillary complex. British Heart Journal, 39, 1012–1018.CrossRefGoogle Scholar
  30. 30.
    Ritchie, J., Jimenez, J., He, Z., et al. (2006). The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation. Journal of Biomechanics, 39, 1129–1135.CrossRefGoogle Scholar
  31. 31.
    Becker, A. E., & de Wit, A. P. M. (1979). Mitral valve apparatus. A spectrum of normality relevant to mitral prolapse. British Heart Journal, 42, 680–689.CrossRefGoogle Scholar
  32. 32.
    Van der Bel-Kahn, J., Duren, D. R., & Becker, A. E. (1985). Isolated mitral valve prolapse: chordal architecture as an anatomic basis in older patients. Journal of the American College of Cardiology, 5, 1335–1340.CrossRefGoogle Scholar
  33. 33.
    Choure, A. J., Garcia, M. J., Hesse, B., et al. (2006). In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography: implications for percutaneous coronary sinus mitral annuloplasty. Journal of the American College of Cardiology, 48, 1938–1945.CrossRefGoogle Scholar
  34. 34.
    Misfeld, M., & Sievers, H. H. (2007). Heart valve macro- and microstructure. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1421–1436.CrossRefGoogle Scholar
  35. 35.
    Marron, K., Yacoub, M. H., Polak, J. M., et al. (1996). Innervation of human atrioventricular and arterial valves. Circulation, 94, 368–375.CrossRefGoogle Scholar
  36. 36.
    Filip, D. A., Radu, A., & Simionescu, M. (1986). Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circulation Research, 59, 310–320.CrossRefGoogle Scholar
  37. 37.
    Icardo, J. M., & Colvee, E. (1995). Atrioventricular valves of the mouse: III. Collagenous skeleton and myotendinous junction. Anatomical Record, 243, 367–375.CrossRefGoogle Scholar
  38. 38.
    Icardo, J. M., & Colvee, E. (1995). Atrioventricular valves of the mouse: II. Light and transmission electron microscopy. Anatomical Record, 241, 391–400.CrossRefGoogle Scholar
  39. 39.
    Fenoglio, J. J., Jr., Tuan Duc, P., Wit, A. L., et al. (1972). Canine mitral complex. Ultrastructure and electromechanical properties. Circulation Research, 31, 417–430.CrossRefGoogle Scholar
  40. 40.
    Itoh, A., Krishnamurthy, G., Swanson, J. C., et al. (2009). Active stiffening of mitral valve leaflets in the beating heart. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1766–H1773.CrossRefGoogle Scholar
  41. 41.
    Laske, T. G., Shrivastav, M., & Iaizzo, P. A. (2009). The cardiac conduction system. In P. A. Iaizzo (Ed.), The handbook of cardiac anatomy, physiology, and devices (2nd ed., pp. 15–21). Totowa: Humana Press.Google Scholar
  42. 42.
  43. 43.
    John, R., & Liao, K. K. (2009). Heart valve disease. In P. A. Iaizzo (Ed.), The handbook of cardiac anatomy, physiology, and devices (2nd ed., pp. 527–549). Totowa: Humana Press.CrossRefGoogle Scholar
  44. 44.
    Hall, M. J., Levant, S., & Defrances, C. J. (2012). Hospitalization for congestive heart failure: United States, 2000–2010. NCHS Data Brief, 108, 1–8.Google Scholar
  45. 45.
    Martinez-Selles, M., Garcia Robles, J. A., Prieto, L., et al. (2002). Annual rates of admission and seasonal variations in hospitalizations for heart failure. European Journal of Heart Failure, 4, 779–786.CrossRefGoogle Scholar
  46. 46.
    Freed, L. A., Levy, D., Levine, R. A., et al. (1999). Prevalence and clinical outcome of mitral-valve prolapse. The New England Journal of Medicine, 341, 1–7.CrossRefGoogle Scholar
  47. 47.
    Monin, J. L., Dehant, P., Roiron, C., et al. (2005). Functional assessment of mitral regurgitation by transthoracic echocardiography using standardized imaging planes diagnostic accuracy and outcome implications. Journal of the American College of Cardiology, 46, 302–309.CrossRefGoogle Scholar
  48. 48.
    Boudoulas, H., Vavuranakis, M., & Wooley, C. F. (1994). Valvular heart disease: the influence of changing etiology on nosology. The Journal of Heart Valve Disease, 3, 516–526.Google Scholar
  49. 49.
    Khan, S. S., Trento, A., DeRobertis, M., et al. (2001). Twenty-year comparison of tissue and mechanical valve replacement. The Journal of Thoracic and Cardiovascular Surgery, 122, 257–269.CrossRefGoogle Scholar
  50. 50.
    Kulik, A., Bédard, P., Lam, B. K., et al. (2006). Mechanical versus bioprosthetic valve replacement in middle-aged patients. European Journal of Cardio-Thoracic Surgery, 30, 485–491.CrossRefGoogle Scholar
  51. 51.
    Woo, Y. J., & Nacke, E. A. (2006). Robotic minimally invasive mitral valve reconstruction yields less blood product transfusion and shorter length of stay. Surgery, 140(2), 263–267.CrossRefGoogle Scholar
  52. 52.
    Montant, P., Chenot, F., Robert, A., et al. (2009). Long-term survival in asymptomatic patients with severe degenerative mitral regurgitation: a propensity score-based comparison between an early surgical strategy and a conservative treatment approach. The Journal of Thoracic and Cardiovascular Surgery, 138, 1339–1348.CrossRefGoogle Scholar
  53. 53.
    Feldman, T., Foster, E., Glower, D. G., et al. (2011). Percutaneous repair or surgery for mitral regurgitation. The New England Journal of Medicine, 364, 1395–1406.CrossRefGoogle Scholar
  54. 54.
    Siminiak, T., Hoppe, U. C., Schofer, J., et al. (2009). Effectiveness and safety of percutaneous coronary sinus-based mitral valve repair in patients with dilated cardiomyopathy (from the AMADEUS trial). The American Journal of Cardiology, 104, 565–570.CrossRefGoogle Scholar
  55. 55.
    Dubreuil, O., Basmadjian, A., Ducharme, A., et al. (2007). Percutaneous mitral valve annuloplasty for ischemic mitral regurgitation: first in man experience with a temporary implant. Catheterization and Cardiovascular Interventions, 69, 1053–1061.CrossRefGoogle Scholar
  56. 56.
    Sack, S., Kahlert, P., Bilodeau, L., et al. (2009). Percutaneous transvenous mitral annuloplasty: initial human experience with a novel coronary sinus implant device. Circulation. Cardiovascular Interventions, 2, 277–284.CrossRefGoogle Scholar
  57. 57.
    Chiam, P. T., & Ruiz, C. E. (2011). Percutaneous transcatheter mitral valve repair: a classification of the technology. JACC. Cardiovascular Interventions, 4, 1–13.CrossRefGoogle Scholar
  58. 58.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael G. Bateman
    • 1
  • Jason L. Quill
    • 1
  • Alexander J. Hill
    • 1
  • Paul A. Iaizzo
    • 2
  1. 1.Medtronic, Inc.MinneapolisUSA
  2. 2.Department of SurgeryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations