Transcriptome Analysis in Patients with Progressive Coronary Artery Disease: Identification of Differential Gene Expression in Peripheral Blood

  • Thomas G. Nührenberg
  • Nicole Langwieser
  • Harald Binder
  • Thorsten Kurz
  • Christian Stratz
  • Rolf-Peter Kienzle
  • Dietmar Trenk
  • Dietlind Zohlnhöfer-Momm
  • Franz-Josef Neumann


Inflammation as a systemic process plays a central role in atherosclerotic plaque progression (PP). Here we investigated other systemic correlates of PP by global gene expression profiling (GEP) in peripheral blood. From a database of 45,727 coronary angiograms, we identified two patient groups with good risk factor control, but different clinical evolution: First, 16 patients had significant PP leading to repeated coronary interventions, and second, 16 patients had angiographically documented stable courses. GEP revealed 93 differentially expressed genes, of which 23 have unknown function. Among the remaining 70 genes, 10 were associated with progenitor and pluripotent cells, but only three genes with atherosclerosis. We developed a risk prediction gene signature by a multivariable statistical model integrating comprehensive laboratory and clinical patient data. This signature identified PP with high sensitivity and specificity for new patients, as estimated by resampling techniques. GEP results were validated by qPCR for ANK2 and GSTT1.


Coronary artery disease Atherosclerosis Plaque progression Gene expression 

Supplementary material

12265_2012_9420_MOESM1_ESM.ppt (120 kb)
ESM 1(PPT 119 kb)


  1. 1.
    Lusis, A. J. (2000). Atherosclerosis. Nature, 407, 233–241.PubMedCrossRefGoogle Scholar
  2. 2.
    Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine, 352, 1685–1695.PubMedCrossRefGoogle Scholar
  3. 3.
    Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–874.PubMedCrossRefGoogle Scholar
  4. 4.
    Libby, P., & Theroux, P. (2005). Pathophysiology of coronary artery disease. Circulation, 111, 3481–3488.PubMedCrossRefGoogle Scholar
  5. 5.
    Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Reith, C., Bhala, N., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 376, 1670–1681.PubMedCrossRefGoogle Scholar
  6. 6.
    Kwak, B., Mulhaupt, F., Myit, S., & Mach, F. (2000). Statins as a newly recognized type of immunomodulator. Nature Medicine, 6, 1399–1402.PubMedCrossRefGoogle Scholar
  7. 7.
    Austen, W. G., Edwards, J. E., Frye, R. L., Gensini, G. G., Gott, V. L., Griffith, L. S., et al. (1975). A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation, 51, 5–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Bestehorn, H. P., Neumann, F. J., Buttner, H. J., Betz, P., Sturzenhofecker, P., von Hodenberg, E., et al. (2004). Evaluation of the effect of oral verapamil on clinical outcome and angiographic restenosis after percutaneous coronary intervention: the randomized, double-blind, placebo-controlled, multicenter Verapamil Slow-Release for Prevention of Cardiovascular Events After Angioplasty (VESPA) Trial. Journal of the American College of Cardiology, 43, 2160–2165.PubMedCrossRefGoogle Scholar
  9. 9.
    Ringqvist, I., Fisher, L. D., Mock, M., Davis, K. B., Wedel, H., Chaitman, B. R., et al. (1983). Prognostic value of angiographic indices of coronary artery disease from the Coronary Artery Surgery Study (CASS). The Journal of Clinical Investigation, 71, 1854–1866.PubMedCrossRefGoogle Scholar
  10. 10.
    Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57, 289–300.Google Scholar
  11. 11.
    Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95, 14863–14868.PubMedCrossRefGoogle Scholar
  12. 12.
    Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology, 4, P3.PubMedCrossRefGoogle Scholar
  13. 13.
    Eden, E., Navon, R., Steinfeld, I., Lipson, D., & Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 10, 48.PubMedCrossRefGoogle Scholar
  14. 14.
    Tutz, G., & Binder, H. (2007). Boosting ridge regression. Computational Statistics & Data Analysis, 51, 6044–6059.CrossRefGoogle Scholar
  15. 15.
    Binder, H., & Schumacher, M. (2008). Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular Biology, 7, 12.CrossRefGoogle Scholar
  16. 16.
    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.PubMedCrossRefGoogle Scholar
  17. 17.
    Mohr, S., & Liew, C. C. (2007). The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends in Molecular Medicine, 13, 422–432.PubMedCrossRefGoogle Scholar
  18. 18.
    Ma, J., & Liew, C. C. (2003). Gene profiling identifies secreted protein transcripts from peripheral blood cells in coronary artery disease. Journal of Molecular and Cellular Cardiology, 35, 993–998.PubMedCrossRefGoogle Scholar
  19. 19.
    Sinnaeve, P. R., Donahue, M. P., Grass, P., Seo, D., Vonderscher, J., Chibout, S. D., et al. (2009). Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PloS One, 4, e7037.PubMedCrossRefGoogle Scholar
  20. 20.
    Patino, W. D., Mian, O. Y., Kang, J. G., Matoba, S., Bartlett, L. D., Holbrook, B., et al. (2005). Circulating transcriptome reveals markers of atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 3423–3428.PubMedCrossRefGoogle Scholar
  21. 21.
    Wingrove, J. A., Daniels, S. E., Sehnert, A. J., Tingley, W., Elashoff, M. R., Rosenberg, S., et al. (2008). Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circulation. Cardiovascular Genetics, 1, 31–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Ma, J., Dempsey, A. A., Stamatiou, D., Marshall, K. W., & Liew, C. C. (2007). Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects. Atherosclerosis, 191, 63–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Timofeeva, A. V., Goryunova, L. E., Khaspekov, G. L., Kovalevskii, D. A., Scamrov, A. V., Bulkina, O. S., et al. (2006). Altered gene expression pattern in peripheral blood leukocytes from patients with arterial hypertension. Annals of the New York Academy of Sciences, 1091, 319–335.PubMedCrossRefGoogle Scholar
  24. 24.
    Hitoshi, S., Ishino, Y., Kumar, A., Jasmine, S., Tanaka, K. F., Kondo, T., et al. (2011). Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nature Neuroscience, 14, 957–964.PubMedCrossRefGoogle Scholar
  25. 25.
    van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136, 903–912.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kamper, U., et al. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111, 2981–2987.PubMedCrossRefGoogle Scholar
  27. 27.
    Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. The New England Journal of Medicine, 353, 999–1007.PubMedCrossRefGoogle Scholar
  28. 28.
    Briguori, C., Testa, U., Riccioni, R., Colombo, A., Petrucci, E., Condorelli, G., et al. (2010). Correlations between progression of coronary artery disease and circulating endothelial progenitor cells. The FASEB Journal, 24, 1981–1988.CrossRefGoogle Scholar
  29. 29.
    Doney, A. S., Lee, S., Leese, G. P., Morris, A. D., & Palmer, C. N. (2005). Increased cardiovascular morbidity and mortality in type 2 diabetes is associated with the glutathione S transferase theta-null genotype: a Go-DARTS study. Circulation, 111, 2927–2934.PubMedCrossRefGoogle Scholar
  30. 30.
    Ellis, K. L., Newton-Cheh, C., Wang, T. J., Frampton, C. M., Doughty, R. N., Whalley, G. A., et al. (2011). Association of genetic variation in the natriuretic peptide system with cardiovascular outcomes. Journal of Molecular and Cellular Cardiology, 50, 695–701.PubMedCrossRefGoogle Scholar
  31. 31.
    Norskov, M. S., Frikke-Schmidt, R., Loft, S., Sillesen, H., Grande, P., Nordestgaard, B. G., et al. (2011). Copy number variation in glutathione S-transferases M1 and T1 and ischemic vascular disease: four studies and meta-analyses. Circulation. Cardiovascular Genetics, 4, 418–428.PubMedCrossRefGoogle Scholar
  32. 32.
    Zacho, J., Tybjaerg-Hansen, A., Jensen, J. S., Grande, P., Sillesen, H., & Nordestgaard, B. G. (2008). Genetically elevated C-reactive protein and ischemic vascular disease. The New England Journal of Medicine, 359, 1897–1908.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Thomas G. Nührenberg
    • 1
  • Nicole Langwieser
    • 2
    • 3
  • Harald Binder
    • 4
    • 5
  • Thorsten Kurz
    • 6
  • Christian Stratz
    • 1
  • Rolf-Peter Kienzle
    • 1
  • Dietmar Trenk
    • 1
  • Dietlind Zohlnhöfer-Momm
    • 2
    • 3
  • Franz-Josef Neumann
    • 1
  1. 1.Klinik für Kardiologie und Angiologie IIUniversitäts-Herzzentrum Freiburg • Bad KrozingenBad KrozingenGermany
  2. 2.Medizinische Klinik mit Schwerpunkt Kardiologie, Campus Virchow KlinikumCharitéBerlinGermany
  3. 3.Berlin-Brandenburg Center for Regenerative TherapiesBerlinGermany
  4. 4.Institut für Medizinische Biometrie, Epidemiologie und InformatikUniversitätsmedizin der Johannes-Gutenberg-Universität MainzMainzGermany
  5. 5.Institut für Medizinische Biometrie und Medizinische InformatikUniversitätsklinikum FreiburgFreiburgGermany
  6. 6.Zentrum für Biosystemanalyse der Universität FreiburgFreiburgGermany

Personalised recommendations