Journal of Cardiovascular Translational Research

, Volume 5, Issue 6, pp 768–782 | Cite as

Cardiac Intercellular Communication: Are Myocytes and Fibroblasts Fair-Weather Friends?

  • Melissa L. Martin
  • Burns C. Blaxall


The cardiac fibroblast (CF) has historically been thought of as a quiescent cell of the heart, passively maintaining the extracellular environment for the cardiomyocytes (CM), the functional cardiac cell type. The increasingly appreciated role of the CF, however, extends well beyond matrix production, governing many aspects of cardiac function including cardiac electrophysiology and contractility. Importantly, its contributions to cardiac pathophysiology and pathologic remodeling have created a shift in the field’s focus from the CM to the CF as a therapeutic target in the treatment of cardiac diseases. In response to cardiac injury, the CF undergoes a pathologic phenotypic transition into a myofibroblast, characterized by contractile smooth muscle proteins and upregulation of collagens, matrix proteins, and adhesion molecules. Further, the myofibroblast upregulates expression and secretion of a variety of pro-inflammatory, profibrotic mediators, including cytokines, chemokines, and growth factors. These mediators act in both an autocrine fashion to further activate CFs, as well as in a paracrine manner on both CMs and circulating inflammatory cells to induce myocyte dysfunction and chronic inflammation, respectively. Together, cell-specific cytokine-induced effects exacerbate pathologic remodeling and progression to HF. A better understanding of this dynamic intercellular communication will lead to novel targets for the attenuation of cardiac remodeling. Current strategies aimed at targeting cytokines have been largely unsuccessful in clinical trials, lending insights into ways that such intercellular cross talk can be more effectively attenuated. This review will summarize the current knowledge regarding CF functions in the heart and will discuss the regulation and signaling behind CF-mediated cytokine production and function. We will then highlight clinical trials that have exploited cytokine cross talk in the treatment of heart failure and provide novel strategies currently under investigation that may more effectively target pathologic CF–CM communication for the treatment of cardiac disease. This review explores novel mechanisms to directly attenuate heart failure progression through inhibition of signaling downstream of pro-inflammatory cytokines that are elevated after cardiac injury.


Heart failure Cardiomyopathy Cardiac fibroblast Cardiac fibrosis 


  1. 1.
    Blaxall, B. C., & Muslin, A. J. (2010). Cardiovascular therapeutic discovery. Journal of Cardiovascular Translational Research, 3, 429–430.PubMedGoogle Scholar
  2. 2.
    Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation, 121, e46–e215.PubMedGoogle Scholar
  3. 3.
    Abraham, W. T., Greenberg, B. H., & Yancy, C. W. (2008). Pharmacologic therapies across the continuum of left ventricular dysfunction. The American Journal of Cardiology, 102, 21G–28G.PubMedGoogle Scholar
  4. 4.
    Bristow, M. R. (2000). Beta-adrenergic receptor blockade in chronic heart failure. Circulation, 101, 558–569.PubMedGoogle Scholar
  5. 5.
    Packer, M., Bristow, M. R., Cohn, J. N., Colucci, W. S., Fowler, M. B., Gilbert, E. M., et al. (1996). The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. The New England Journal of Medicine, 334, 1349–1355.PubMedGoogle Scholar
  6. 6.
    Lechat, P., Packer, M., Chalon, S., Cucherat, M., Arab, T., & Boissel, J. P. (1998). Clinical effects of beta-adrenergic blockade in chronic heart failure: A meta-analysis of double-blind, placebo-controlled, randomized trials. Circulation, 98, 1184–1191.PubMedGoogle Scholar
  7. 7.
    Liu, B., Dhawan, L., Blaxall, B. C., & Taubman, M. B. (2010). Protein kinase Cδ mediates MCP-1 mRNA stabilization in vascular smooth muscle cells. Molecular and Cellular Biochemistry, 344, 73–79.PubMedGoogle Scholar
  8. 8.
    Dhawan, L., Liu, B., Blaxall, B. C., & Taubman, M. B. (2007). A novel role for the glucocorticoid receptor in the regulation of monocyte chemoattractant protein-1 mRNA stability. Journal of Biological Chemistry, 282, 10146–10152.PubMedGoogle Scholar
  9. 9.
    Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. The New England Journal of Medicine, 358, 1370–1380.PubMedGoogle Scholar
  10. 10.
    Patten, R. D., Aronovitz, M. J., Deras-Mejia, L., Pandian, N. G., Hanak, G. G., Smith, J. J., et al. (1998). Ventricular remodeling in a mouse model of myocardial infarction. American Journal of Physiology, 274, H1812–H1820.PubMedGoogle Scholar
  11. 11.
    Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: Involvement in cardiac hypertrophy. Circulation Research, 91, 1103–1113.PubMedGoogle Scholar
  12. 12.
    Porter, K. E., & Turner, N. A. (2009). Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacology and Therapeutics, 123, 255–278.PubMedGoogle Scholar
  13. 13.
    Souders, C. A., Bowers, S. L., & Baudino, T. A. (2009). Cardiac fibroblast: The renaissance cell. Circulation Research, 105, 1164–1176.PubMedGoogle Scholar
  14. 14.
    Krenning, G., Zeisberg, E. M., & Kalluri, R. (2010). The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology, 225, 631–637.PubMedGoogle Scholar
  15. 15.
    Siquier, B., Sanchez-Alvarez, J., Garcia-Mendez, E., Sabria, M., Santos, J., Pallares, R., et al. (2006). Efficacy and safety of twice-daily pharmacokinetically enhanced amoxicillin/clavulanate (2000/125 mg) in the treatment of adults with community-acquired pneumonia in a country with a high prevalence of penicillin-resistant Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy, 57, 536–545.PubMedGoogle Scholar
  16. 16.
    Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast network in rabbit sinoatrial node: Structural and functional identification of homogeneous and heterogeneous cell coupling. Circulation Research, 94, 828–835.PubMedGoogle Scholar
  17. 17.
    Sabri, A., Muske, G., Zhang, H., Pak, E., Darrow, A., Andrade-Gordon, P., et al. (2000). Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circulation Research, 86, 1054–1061.PubMedGoogle Scholar
  18. 18.
    Sabri, A., Short, J., Guo, J., & Steinberg, S. F. (2002). Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: Distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circulation Research, 91, 532–539.PubMedGoogle Scholar
  19. 19.
    Sabri, A., Pak, E., Alcott, S. A., Wilson, B. A., & Steinberg, S. F. (2000). Coupling function of endogenous alpha(1)- and beta-adrenergic receptors in mouse cardiomyocytes. Circulation Research, 86, 1047–1053.PubMedGoogle Scholar
  20. 20.
    Tilley, R. E., Pedersen, B., Pawlinski, R., Sato, Y., Erlich, J. H., Shen, Y., et al. (2006). Atherosclerosis in mice is not affected by a reduction in tissue factor expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 555–562.PubMedGoogle Scholar
  21. 21.
    Gajewski, Z., Faundez, R., Thun, R., & Pawlinski, B. (2006). Adrenergic stimulation and blocking of hormonal secretion activity of cultured cow granulosa cells. Journal of Physiology and Pharmacology: an Official Journal of the Polish Physiological Society, 57(Suppl 8), 125–137.Google Scholar
  22. 22.
    Pawlinski, R., & Mackman, N. (2004). Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Critical Care Medicine, 32, S293–S297.PubMedGoogle Scholar
  23. 23.
    Moseley, T. A., Haudenschild, D. R., Rose, L., & Reddi, A. H. (2003). Interleukin-17 family and IL-17 receptors. Cytokine & Growth Factor Reviews, 14, 155–174.Google Scholar
  24. 24.
    Brown, R. D., Ambler, S. K., Mitchell, M. D., & Long, C. S. (2005). The cardiac fibroblast: Therapeutic target in myocardial remodeling and failure. Annual Review of Pharmacology and Toxicology, 45, 657–687.PubMedGoogle Scholar
  25. 25.
    Sabri, A., Wilson, B. A., & Steinberg, S. F. (2002). Dual actions of the G{alpha}q agonist Pasteurella multocida toxin to promote cardiomyocyte hypertrophy and enhance apoptosis susceptibility. Circulation Research, 90, 850–857.PubMedGoogle Scholar
  26. 26.
    Gajewski, Z., Thun, R., Faundez, R., & Pawlinski, B. (2006). The influence of alpha-adrenergic receptors stimulator and blockers and beta-blocker on the ovary and endocrinological activity in heifers during superovulation. Journal of Physiology and Pharmacology: an Official Journal of the Polish Physiological Society, 57(Suppl 8), 173–188.Google Scholar
  27. 27.
    Erlich, J. H., Apostolopoulos, J., Wun, T. C., Kretzmer, K. K., Holdsworth, S. R., & Tipping, P. G. (1996). Renal expression of tissue factor pathway inhibitor and evidence for a role in crescentic glomerulonephritis in rabbits. The Journal of Clinical Investigation, 98, 325–335.PubMedGoogle Scholar
  28. 28.
    Kakkar, R., & Lee, R. T. (2010). Intramyocardial fibroblast myocyte communication. Circulation Research, 106, 47–57.PubMedGoogle Scholar
  29. 29.
    Erlich, J. H., Boyle, E. M., Labriola, J., Kovacich, J. C., Santucci, R. A., Fearns, C., et al. (2000). Inhibition of the tissue factor-thrombin pathway limits infarct size after myocardial ischemia-reperfusion injury by reducing inflammation. American Journal of Pathology, 157, 1849–1862.PubMedGoogle Scholar
  30. 30.
    Fredj, S., Bescond, J., Louault, C., & Potreau, D. (2005). Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. Journal of Cellular Physiology, 202, 891–899.PubMedGoogle Scholar
  31. 31.
    Bowers, S. L., Borg, T. K., & Baudino, T. A. (2010). The dynamics of fibroblast–myocyte–capillary interactions in the heart. Annals of the New York Academy of Sciences, 1188, 143–152.PubMedGoogle Scholar
  32. 32.
    LaFramboise, W. A., Scalise, D., Stoodley, P., Graner, S. R., Guthrie, R. D., Magovern, J. A., et al. (2007). Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. American Journal of Physiology. Cell Physiology, 292, C1799–C1808.PubMedGoogle Scholar
  33. 33.
    Pedrotty, D. M., Klinger, R. Y., Kirkton, R. D., & Bursac, N. (2009). Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovascular Research, 83, 688–697.PubMedGoogle Scholar
  34. 34.
    Matsusaka, T., Katori, H., Inagami, T., Fogo, A., & Ichikawa, I. (1999). Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. The Journal of Clinical Investigation, 103, 1451–1458.PubMedGoogle Scholar
  35. 35.
    Sevastos, J., Kennedy, S. E., Davis, D. R., Sam, M., Peake, P. W., Charlesworth, J. A., et al. (2007). Tissue factor deficiency and PAR-1 deficiency are protective against renal ischemia reperfusion injury. Blood, 109, 577–583.PubMedGoogle Scholar
  36. 36.
    Antoniak, S., Rojas, M., Spring, D., Bullard, T. A., Verrier, E. D., Blaxall, B. C., et al. (2010). Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2136–2142.PubMedGoogle Scholar
  37. 37.
    Kapadia, S. R., Oral, H., Lee, J., Nakano, M., Taffet, G. E., & Mann, D. L. (1997). Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circulation Research, 81, 187–195.PubMedGoogle Scholar
  38. 38.
    Pawlinski, R., Tencati, M., Hampton, C. R., Shishido, T., Bullard, T. A., Casey, L. M., et al. (2007). Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation, 116, 2298–2306.PubMedGoogle Scholar
  39. 39.
    Westermann, D., Lindner, D., Kasner, M., Zietsch, C., Savvatis, K., Escher, F., et al. (2011). Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circulation Heart Failure, 4, 44–52.PubMedGoogle Scholar
  40. 40.
    Long, C. S., Hartogensis, W. E., & Simpson, P. C. (1993). Beta-adrenergic stimulation of cardiac non-myocytes augments the growth-promoting activity of non-myocyte conditioned medium. Journal of Molecular and Cellular Cardiology, 25, 915–925.PubMedGoogle Scholar
  41. 41.
    Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovascular Research, 63, 423–432.PubMedGoogle Scholar
  42. 42.
    Tsutsumi, Y., Matsubara, H., Ohkubo, N., Mori, Y., Nozawa, Y., Murasawa, S., et al. (1998). Angiotensin II type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circulation Research, 83, 1035–1046.PubMedGoogle Scholar
  43. 43.
    Yin, F., Lu, Z. Z., Han, Q. D., & Zhang, Y. Y. (2003). Expression of beta2-adrenergic receptor and its effect on the proliferation of neonatal rat cardiac fibroblasts. Sheng li xue bao[Acta physiologica Sinica], 55, 251–254.Google Scholar
  44. 44.
    Turner, N. A., Porter, K. E., Smith, W. H., White, H. L., Ball, S. G., & Balmforth, A. J. (2003). Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovascular Research, 57, 784–792.PubMedGoogle Scholar
  45. 45.
    Sano, M., Fukuda, K., Kodama, H., Pan, J., Saito, M., Matsuzaki, J., et al. (2000). Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. Journal of Biological Chemistry, 275, 29717–29723.PubMedGoogle Scholar
  46. 46.
    Murray, D. R., Prabhu, S. D., & Chandrasekar, B. (2000). Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation, 101, 2338–2341.PubMedGoogle Scholar
  47. 47.
    Gray, M. O., Long, C. S., Kalinyak, J. E., Li, H. T., & Karliner, J. S. (1998). Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovascular Research, 40, 352–363.PubMedGoogle Scholar
  48. 48.
    Schultz Jel, J., Witt, S. A., Glascock, B. J., Nieman, M. L., Reiser, P. J., Nix, S. L., et al. (2002). TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin ii. The Journal of Clinical Investigation, 109, 787–796.PubMedGoogle Scholar
  49. 49.
    Jaffre, F., Bonnin, P., Callebert, J., Debbabi, H., Setola, V., Doly, S., et al. (2009). Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circulation Research, 104, 113–123.PubMedGoogle Scholar
  50. 50.
    Tal-Or, P., Erlich, S., Porat-Shliom, N., Goldshmit, Y., Ben-Baruch, G., Shaharabani, E., et al. (2006). Ligand-independent regulation of ErbB4 receptor phosphorylation by activated ras. Journal of Cellular Biochemistry, 98, 1482–1494.PubMedGoogle Scholar
  51. 51.
    Prabhu, S. D., Chandrasekar, B., Murray, D. R., & Freeman, G. L. (2000). Beta-adrenergic blockade in developing heart failure: Effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation, 101, 2103–2109.PubMedGoogle Scholar
  52. 52.
    Sia, Y. T., Parker, T. G., Tsoporis, J. N., Liu, P., Adam, A., & Rouleau, J. L. (2002). Long-term effects of carvedilol on left ventricular function, remodeling, and expression of cardiac cytokines after large myocardial infarction in the rat. Journal of Cardiovascular Pharmacology, 39, 73–87.PubMedGoogle Scholar
  53. 53.
    Deten, A., Volz, H. C., Holzl, A., Briest, W., & Zimmer, H. G. (2003). Effect of propranolol on cardiac cytokine expression after myocardial infarction in rats. Molecular and Cellular Biochemistry, 251, 127–137.PubMedGoogle Scholar
  54. 54.
    Gullestad, L., Aukrust, P., Ueland, T., Espevik, T., Yee, G., Vagelos, R., et al. (1999). Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. Journal of the American College of Cardiology, 34, 2061–2067.PubMedGoogle Scholar
  55. 55.
    Gurlek, A., Kilickap, M., Dincer, I., Dandachi, R., Tutkak, H., & Oral, D. (2001). Effect of losartan on circulating TNFalpha levels and left ventricular systolic performance in patients with heart failure. Journal of Cardiovascular Risk, 8, 279–282.PubMedGoogle Scholar
  56. 56.
    Mitchell, M. D., Laird, R. E., Brown, R. D., & Long, C. S. (2007). IL-1beta stimulates rat cardiac fibroblast migration via MAP kinase pathways. American Journal of Physiology—Heart and Circulatory Physiology, 292, H1139–H1147.PubMedGoogle Scholar
  57. 57.
    Yin, F., Wang, Y. Y., Du, J. H., Li, C., Lu, Z. Z., Han, C., et al. (2006). Noncanonical cAMP pathway and p38 MAPK mediate beta2-adrenergic receptor-induced IL-6 production in neonatal mouse cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 40, 384–393.PubMedGoogle Scholar
  58. 58.
    Kim, J., Eckhart, A. D., Eguchi, S., & Koch, W. J. (2002). Beta-adrenergic receptor-mediated DNA synthesis in cardiac fibroblasts is dependent on transactivation of the epidermal growth factor receptor and subsequent activation of extracellular signal-regulated kinases. Journal of Biological Chemistry, 277, 32116–32123.PubMedGoogle Scholar
  59. 59.
    Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: A double-edged sword. Nature Reviews Immunology, 3, 745–756.PubMedGoogle Scholar
  60. 60.
    Kleinbongard, P., Heusch, G., & Schulz, R. (2010). TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacology and Therapeutics, 127, 295–314.PubMedGoogle Scholar
  61. 61.
    Colombo, F., Noel, J., Mayers, P., Mercier, I., & Calderone, A. (2001). Beta-adrenergic stimulation of rat cardiac fibroblasts promotes protein synthesis via the activation of phosphatidylinositol 3-kinase. Journal of Molecular and Cellular Cardiology, 33, 1091–1106.PubMedGoogle Scholar
  62. 62.
    Prabhu, S. D. (2004). Cytokine-induced modulation of cardiac function. Circulation Research, 95, 1140–1153.PubMedGoogle Scholar
  63. 63.
    Aggarwal, S., & Gurney, A. L. (2002). IL-17: Prototype member of an emerging cytokine family. Journal of Leukocyte Biology, 71, 1–8.PubMedGoogle Scholar
  64. 64.
    Zamilpa, R., Kanakia, R., Cigarroa, J., Dai, Q., Escobar, G. P., Martinez, H., et al. (2011). CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. American Journal of Physiology—Heart and Circulatory Physiology, 300, H1418–H1426.PubMedGoogle Scholar
  65. 65.
    van Amerongen, M. J., Harmsen, M. C., van Rooijen, N., Petersen, A. H., & van Luyn, M. J. (2007). Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. American Journal of Pathology, 170, 818–829.PubMedGoogle Scholar
  66. 66.
    Kubota, T., Miyagishima, M., Alvarez, R. J., Kormos, R., Rosenblum, W. D., Demetris, A. J., et al. (2000). Expression of proinflammatory cytokines in the failing human heart: Comparison of recent-onset and end-stage congestive heart failure. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation, 19, 819–824.Google Scholar
  67. 67.
    Torre-Amione, G., Kapadia, S., Benedict, C., Oral, H., Young, J. B., & Mann, D. L. (1996). Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the Studies of Left Ventricular Dysfunction (SOLVD). Journal of the American College of Cardiology, 27, 1201–1206.PubMedGoogle Scholar
  68. 68.
    Vasan, R. S., Sullivan, L. M., Roubenoff, R., Dinarello, C. A., Harris, T., Benjamin, E. J., et al. (2003). Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: The Framingham Heart Study. Circulation, 107, 1486–1491.PubMedGoogle Scholar
  69. 69.
    Rauchhaus, M., Doehner, W., Francis, D. P., Davos, C., Kemp, M., Liebenthal, C., et al. (2000). Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation, 102, 3060–3067.PubMedGoogle Scholar
  70. 70.
    Moro, C., Jouan, M. G., Rakotovao, A., Toufektsian, M. C., Ormezzano, O., Nagy, N., et al. (2007). Delayed expression of cytokines after reperfused myocardial infarction: Possible trigger for cardiac dysfunction and ventricular remodeling. American Journal of Physiology—Heart and Circulatory Physiology, 293, H3014–H3019.PubMedGoogle Scholar
  71. 71.
    Ono, K., Matsumori, A., Shioi, T., Furukawa, Y., & Sasayama, S. (1998). Cytokine gene expression after myocardial infarction in rat hearts: Possible implication in left ventricular remodeling. Circulation, 98, 149–156.PubMedGoogle Scholar
  72. 72.
    Deten, A., Volz, H. C., Briest, W., & Zimmer, H. G. (2002). Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovascular Research, 55, 329–340.PubMedGoogle Scholar
  73. 73.
    Yue, P., Massie, B. M., Simpson, P. C., & Long, C. S. (1998). Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure. American Journal of Physiology, 275, H250–H258.PubMedGoogle Scholar
  74. 74.
    Brouty-Boye, D., Pottin-Clemenceau, C., Doucet, C., Jasmin, C., & Azzarone, B. (2000). Chemokines and CD40 expression in human fibroblasts. European Journal of Immunology, 30, 914–919.PubMedGoogle Scholar
  75. 75.
    Buckley, C. D., Pilling, D., Lord, J. M., Akbar, A. N., Scheel-Toellner, D., & Salmon, M. (2001). Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends in Immunology, 22, 199–204.PubMedGoogle Scholar
  76. 76.
    Seta, Y., Shan, K., Bozkurt, B., Oral, H., & Mann, D. L. (1996). Basic mechanisms in heart failure: The cytokine hypothesis. Journal of Cardiac Failure, 2, 243–249.PubMedGoogle Scholar
  77. 77.
    Mann, D. L. (2002). Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circulation Research, 91, 988–998.PubMedGoogle Scholar
  78. 78.
    Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94, 1543–1553.PubMedGoogle Scholar
  79. 79.
    Deten, A., Holzl, A., Leicht, M., Barth, W., & Zimmer, H. G. (2001). Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. Journal of Molecular and Cellular Cardiology, 33, 1191–1207.PubMedGoogle Scholar
  80. 80.
    Dean, R. G., Balding, L. C., Candido, R., Burns, W. C., Cao, Z., Twigg, S. M., et al. (2005). Connective tissue growth factor and cardiac fibrosis after myocardial infarction. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 53, 1245–1256.Google Scholar
  81. 81.
    Fisher, S. A., & Absher, M. (1995). Norepinephrine and Ang II stimulate secretion of TGF-beta by neonatal rat cardiac fibroblasts in vitro. American Journal of Physiology, 268, C910–C917.PubMedGoogle Scholar
  82. 82.
    Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74, 184–195.PubMedGoogle Scholar
  83. 83.
    Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of Cell Biology, 122, 103–111.PubMedGoogle Scholar
  84. 84.
    Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P. J., Ariyan, S., Dikalov, S., et al. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circulation Research, 97, 900–907.PubMedGoogle Scholar
  85. 85.
    Chua, C. C., Chua, B. H., Zhao, Z. Y., Krebs, C., Diglio, C., & Perrin, E. (1991). Effect of growth factors on collagen metabolism in cultured human heart fibroblasts. Connective Tissue Research, 26, 271–281.PubMedGoogle Scholar
  86. 86.
    Kapoun, A. M., Liang, F., O’Young, G., Damm, D. L., Quon, D., White, R. T., et al. (2004). B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: Fibrosis, myofibroblast conversion, proliferation, and inflammation. Circulation Research, 94, 453–461.PubMedGoogle Scholar
  87. 87.
    Eghbali, M., Tomek, R., Sukhatme, V. P., Woods, C., & Bhambi, B. (1991). Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circulation Research, 69, 483–490.PubMedGoogle Scholar
  88. 88.
    Schluter, K. D., Zhou, X. J., & Piper, H. M. (1995). Induction of hypertrophic responsiveness to isoproterenol by TGF-beta in adult rat cardiomyocytes. American Journal of Physiology, 269, C1311–C1316.PubMedGoogle Scholar
  89. 89.
    Rosenkranz, S., Flesch, M., Amann, K., Haeuseler, C., Kilter, H., Seeland, U., et al. (2002). Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). American Journal of Physiology—Heart and Circulatory Physiology, 283, H1253–H1262.PubMedGoogle Scholar
  90. 90.
    Matsumoto-Ida, M., Takimoto, Y., Aoyama, T., Akao, M., Takeda, T., & Kita, T. (2006). Activation of TGF-beta1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. American Journal of Physiology—Heart and Circulatory Physiology, 290, H709–H715.PubMedGoogle Scholar
  91. 91.
    Li, P., Wang, D., Lucas, J., Oparil, S., Xing, D., Cao, X., et al. (2008). Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circulation Research, 102, 185–192.PubMedGoogle Scholar
  92. 92.
    Bujak, M., Ren, G., Kweon, H. J., Dobaczewski, M., Reddy, A., Taffet, G., et al. (2007). Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 116, 2127–2138.PubMedGoogle Scholar
  93. 93.
    Okada, H., Takemura, G., Kosai, K., Li, Y., Takahashi, T., Esaki, M., et al. (2005). Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation, 111, 2430–2437.PubMedGoogle Scholar
  94. 94.
    Kuwahara, F., Kai, H., Tokuda, K., Kai, M., Takeshita, A., Egashira, K., et al. (2002). Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation, 106, 130–135.PubMedGoogle Scholar
  95. 95.
    Torre-Amione, G., Kapadia, S., Lee, J., Durand, J. B., Bies, R. D., Young, J. B., et al. (1996). Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 93, 704–711.PubMedGoogle Scholar
  96. 96.
    Levine, B., Kalman, J., Mayer, L., Fillit, H. M., & Packer, M. (1990). Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. The New England Journal of Medicine, 323, 236–241.PubMedGoogle Scholar
  97. 97.
    Petretta, M., Condorelli, G. L., Spinelli, L., Scopacasa, F., de Caterina, M., Leosco, D., et al. (2000). Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. American Heart Journal, 140, E28.PubMedGoogle Scholar
  98. 98.
    Valgimigli, M., Ceconi, C., Malagutti, P., Merli, E., Soukhomovskaia, O., Francolini, G., et al. (2005). Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: The cytokine-activation and long-term prognosis in myocardial infarction (C-alpha) study. Circulation, 111, 863–870.PubMedGoogle Scholar
  99. 99.
    Porter, K. E., Turner, N. A., O’Regan, D. J., & Ball, S. G. (2004). Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9 secretion: Inhibition by simvastatin. Cardiovascular Research, 64, 507–515.PubMedGoogle Scholar
  100. 100.
    Turner, N. A., Mughal, R. S., Warburton, P., O’Regan, D. J., Ball, S. G., & Porter, K. E. (2007). Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: Effects of statins and thiazolidinediones. Cardiovascular Research, 76, 81–90.PubMedGoogle Scholar
  101. 101.
    Awad, A. E., Kandalam, V., Chakrabarti, S., Wang, X., Penninger, J. M., Davidge, S. T., et al. (2010). Tumor necrosis factor induces matrix metalloproteinases in cardiomyocytes and cardiofibroblasts differentially via superoxide production in a PI3Kgamma-dependent manner. American Journal of Physiology. Cell Physiology, 298, C679–C692.PubMedGoogle Scholar
  102. 102.
    Sun, M., Dawood, F., Wen, W. H., Chen, M., Dixon, I., Kirshenbaum, L. A., et al. (2004). Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation, 110, 3221–3228.PubMedGoogle Scholar
  103. 103.
    Jacobs, M., Staufenberger, S., Gergs, U., Meuter, K., Brandstatter, K., Hafner, M., et al. (1999). Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 31, 1949–1959.PubMedGoogle Scholar
  104. 104.
    Friedrichs, G. S., Swillo, R. E., Jow, B., Bridal, T., Numann, R., Warner, L. M., et al. (2002). Sphingosine modulates myocyte electrophysiology, induces negative inotropy, and decreases survival after myocardial ischemia. Journal of Cardiovascular Pharmacology, 39, 18–28.PubMedGoogle Scholar
  105. 105.
    Krown, K. A., Yasui, K., Brooker, M. J., Dubin, A. E., Nguyen, C., Harris, G. L., et al. (1995). Tnf alpha receptor expression in rat cardiac myocytes: TNF alpha inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Letters, 376, 24–30.PubMedGoogle Scholar
  106. 106.
    Kao, Y. H., Chen, Y. C., Cheng, C. C., Lee, T. I., Chen, Y. J., & Chen, S. A. (2010). Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Critical Care Medicine, 38, 217–222.PubMedGoogle Scholar
  107. 107.
    Sugishita, K., Kinugawa, K., Shimizu, T., Harada, K., Matsui, H., Takahashi, T., et al. (1999). Cellular basis for the acute inhibitory effects of IL-6 and TNF-alpha on excitation–contraction coupling. Journal of Molecular and Cellular Cardiology, 31, 1457–1467.PubMedGoogle Scholar
  108. 108.
    Gulick, T., Chung, M. K., Pieper, S. J., Lange, L. G., & Schreiner, G. F. (1989). Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 86, 6753–6757.PubMedGoogle Scholar
  109. 109.
    Schulz, R., Panas, D. L., Catena, R., Moncada, S., Olley, P. M., & Lopaschuk, G. D. (1995). The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumour necrosis factor-alpha. British Journal of Pharmacology, 114, 27–34.PubMedGoogle Scholar
  110. 110.
    Ungureanu-Longrois, D., Balligand, J. L., Simmons, W. W., Okada, I., Kobzik, L., Lowenstein, C. J., et al. (1995). Induction of nitric oxide synthase activity by cytokines in ventricular myocytes is necessary but not sufficient to decrease contractile responsiveness to beta-adrenergic agonists. Circulation Research, 77, 494–502.PubMedGoogle Scholar
  111. 111.
    Yokoyama, T., Nakano, M., Bednarczyk, J. L., McIntyre, B. W., Entman, M., & Mann, D. L. (1997). Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation, 95, 1247–1252.PubMedGoogle Scholar
  112. 112.
    Scorrano, L., Penzo, D., Petronilli, V., Pagano, F., & Bernardi, P. (2001). Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. Journal of Biological Chemistry, 276, 12035–12040.PubMedGoogle Scholar
  113. 113.
    Krown, K. A., Page, M. T., Nguyen, C., Zechner, D., Gutierrez, V., Comstock, K. L., et al. (1996). Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. The Journal of Clinical Investigation, 98, 2854–2865.PubMedGoogle Scholar
  114. 114.
    Kubota, T., McTiernan, C. F., Frye, C. S., Slawson, S. E., Lemster, B. H., Koretsky, A. P., et al. (1997). Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circulation Research, 81, 627–635.PubMedGoogle Scholar
  115. 115.
    Sivasubramanian, N., Coker, M. L., Kurrelmeyer, K. M., MacLellan, W. R., DeMayo, F. J., Spinale, F. G., et al. (2001). Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation, 104, 826–831.PubMedGoogle Scholar
  116. 116.
    Bozkurt, B., Kribbs, S. B., Clubb, F. J., Jr., Michael, L. H., Didenko, V. V., Hornsby, P. J., et al. (1998). Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 97, 1382–1391.PubMedGoogle Scholar
  117. 117.
    Stamm, C., Friehs, I., Cowan, D. B., Moran, A. M., Cao-Danh, H., Duebener, L. F., et al. (2001). Inhibition of tumor necrosis factor-alpha improves postischemic recovery of hypertrophied hearts. Circulation, 104, I350–I355.PubMedGoogle Scholar
  118. 118.
    Chandrasekar, B., Mitchell, D. H., Colston, J. T., & Freeman, G. L. (1999). Regulation of ccaat/enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion. Circulation, 99, 427–433.PubMedGoogle Scholar
  119. 119.
    Kaneko, K., Kanda, T., Yokoyama, T., Nakazato, Y., Iwasaki, T., Kobayashi, I., et al. (1997). Expression of interleukin-6 in the ventricles and coronary arteries of patients with myocardial infarction. Research Communications in Molecular Pathology and Pharmacology, 97, 3–12.PubMedGoogle Scholar
  120. 120.
    Fredj, S., Bescond, J., Louault, C., Delwail, A., Lecron, J. C., & Potreau, D. (2005). Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. Journal of Cellular Physiology, 204, 428–436.PubMedGoogle Scholar
  121. 121.
    Sano, M., Fukuda, K., Sato, T., Kawaguchi, H., Suematsu, M., Matsuda, S., et al. (2001). ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circulation Research, 89, 661–669.PubMedGoogle Scholar
  122. 122.
    Fischer, P., & Hilfiker-Kleiner, D. (2007). Survival pathways in hypertrophy and heart failure: The gp130-STAT axis. Basic Research in Cardiology, 102, 393–411.PubMedGoogle Scholar
  123. 123.
    Zhong, Z., Wen, Z., & Darnell, J. E., Jr. (1994). Stat3: A STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 264, 95–98.PubMedGoogle Scholar
  124. 124.
    Podewski, E. K., Hilfiker-Kleiner, D., Hilfiker, A., Morawietz, H., Lichtenberg, A., Wollert, K. C., et al. (2003). Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation, 107, 798–802.PubMedGoogle Scholar
  125. 125.
    Hirota, H., Yoshida, K., Kishimoto, T., & Taga, T. (1995). Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proceedings of the National Academy of Sciences of the United States of America, 92, 4862–4866.PubMedGoogle Scholar
  126. 126.
    Bujak, M., Dobaczewski, M., Chatila, K., Mendoza, L. H., Li, N., Reddy, A., et al. (2008). Interleukin-1 receptor type i signaling critically regulates infarct healing and cardiac remodeling. American Journal of Pathology, 173, 57–67.PubMedGoogle Scholar
  127. 127.
    Siwik, D. A., Chang, D. L., & Colucci, W. S. (2000). Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circulation Research, 86, 1259–1265.PubMedGoogle Scholar
  128. 128.
    McTiernan, C. F., Lemster, B. H., Frye, C., Brooks, S., Combes, A., & Feldman, A. M. (1997). Interleukin-1 beta inhibits phospholamban gene expression in cultured cardiomyocytes. Circulation Research, 81, 493–503.PubMedGoogle Scholar
  129. 129.
    Avalos, A., Apablaza, F. A., Quiroz, M., Toledo, V., Peña, J. P., Irarrázabal, C. E., et al. (2012). IL-17A levels increase in the infarcted region of the left ventricle in a rat model of myocardial infarction. Biological Research, 45, 193–200.PubMedGoogle Scholar
  130. 130.
    Liao, Y. H., Xia, N., Zhou, S. F., Tang, T. T., Yan, X. X., Lv, B. J., et al. (2012). Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. Journal of the American College of Cardiology, 59, 420–429.PubMedGoogle Scholar
  131. 131.
    Venkatachalam, K., Mummidi, S., Cortez, D. M., Prabhu, S. D., Valente, A. J., & Chandrasekar, B. (2008). Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. American Journal of Physiology—Heart and Circulatory Physiology, 294, H2078–H2087.PubMedGoogle Scholar
  132. 132.
    Cortez, D. M., Feldman, M. D., Mummidi, S., Valente, A. J., Steffensen, B., Vincenti, M., et al. (2007). IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation. American Journal of Physiology—Heart and Circulatory Physiology, 293, H3356–H3365.PubMedGoogle Scholar
  133. 133.
    Frangogiannis, N. G., Mendoza, L. H., Lindsey, M. L., Ballantyne, C. M., Michael, L. H., Smith, C. W., et al. (2000). IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. Journal of Immunology, 165, 2798–2808.Google Scholar
  134. 134.
    Yamaoka, M., Yamaguchi, S., Okuyama, M., & Tomoike, H. (1999). Anti-inflammatory cytokine profile in human heart failure: Behavior of interleukin-10 in association with tumor necrosis factor-alpha. Japanese Circulation Journal, 63, 951–956.PubMedGoogle Scholar
  135. 135.
    Aukrust, P., Ueland, T., Lien, E., Bendtzen, K., Muller, F., Andreassen, A. K., et al. (1999). Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 83, 376–382.PubMedGoogle Scholar
  136. 136.
    Kaur, K., Sharma, A. K., & Singal, P. K. (2006). Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. American Journal of Physiology—Heart and Circulatory Physiology, 291, H106–H113.PubMedGoogle Scholar
  137. 137.
    Dhingra, S., Sharma, A. K., Arora, R. C., Slezak, J., & Singal, P. K. (2009). IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovascular Research, 82, 59–66.PubMedGoogle Scholar
  138. 138.
    Krishnamurthy, P., Rajasingh, J., Lambers, E., Qin, G., Losordo, D. W., & Kishore, R. (2009). IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circulation Research, 104, e9–e18.PubMedGoogle Scholar
  139. 139.
    Frangogiannis, N. G. (2004). Chemokines in the ischemic myocardium: From inflammation to fibrosis. Inflammation Research, 53, 585–595.PubMedGoogle Scholar
  140. 140.
    Lu, B., Rutledge, B. J., Gu, L., Fiorillo, J., Lukacs, N. W., Kunkel, S. L., et al. (1998). Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. The Journal of Experimental Medicine, 187, 601–608.PubMedGoogle Scholar
  141. 141.
    Kitamoto, S., & Egashira, K. (2002). Gene therapy targeting monocyte chemoattractant protein-1 for vascular disease. Journal of Atherosclerosis and Thrombosis, 9, 261–265.PubMedGoogle Scholar
  142. 142.
    Ni, W., Egashira, K., Kitamoto, S., Kataoka, C., Koyanagi, M., Inoue, S., et al. (2001). New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation, 103, 2096–2101.PubMedGoogle Scholar
  143. 143.
    Egashira, K. (2003). Molecular mechanisms mediating inflammation in vascular disease: Special reference to monocyte chemoattractant protein-1. Hypertension, 41, 834–841.PubMedGoogle Scholar
  144. 144.
    Stumpf, C., Lehner, C., Raaz, D., Yilmaz, A., Anger, T., Daniel, W. G., et al. (2008). Platelets contribute to enhanced MCP-1 levels in patients with chronic heart failure. Heart, 94, 65–69.PubMedGoogle Scholar
  145. 145.
    Deo, R., Khera, A., McGuire, D. K., Murphy, S. A., Meo Neto Jde, P., Morrow, D. A., et al. (2004). Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. Journal of the American College of Cardiology, 44, 1812–1818.PubMedGoogle Scholar
  146. 146.
    Kaikita, K., Hayasaki, T., Okuma, T., Kuziel, W. A., Ogawa, H., & Takeya, M. (2004). Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. American Journal of Pathology, 165, 439–447.PubMedGoogle Scholar
  147. 147.
    Frangogiannis, N. G., Dewald, O., Xia, Y., Ren, G., Haudek, S., Leucker, T., et al. (2007). Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation, 115, 584–592.PubMedGoogle Scholar
  148. 148.
    Hayashidani, S., Tsutsui, H., Shiomi, T., Ikeuchi, M., Matsusaka, H., Suematsu, N., et al. (2003). Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 108, 2134–2140.PubMedGoogle Scholar
  149. 149.
    Gharaee-Kermani, M., Denholm, E. M., & Phan, S. H. (1996). Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. Journal of Biological Chemistry, 271, 17779–17784.PubMedGoogle Scholar
  150. 150.
    Yamamoto, T., Eckes, B., Mauch, C., Hartmann, K., & Krieg, T. (2000). Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop. Journal of Immunology, 164, 6174–6179.Google Scholar
  151. 151.
    Bidzhekov, K., Zernecke, A., & Weber, C. (2006). MCP-1 induces a novel transcription factor with proapoptotic activity. Circulation Research, 98, 1107–1109.PubMedGoogle Scholar
  152. 152.
    Jiang, Y., Beller, D. I., Frendl, G., & Graves, D. T. (1992). Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. Journal of Immunology, 148, 2423–2428.Google Scholar
  153. 153.
    Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiological Reviews, 87, 1285–1342.PubMedGoogle Scholar
  154. 154.
    Ban, K., Ikeda, U., Takahashi, M., Kanbe, T., Kasahara, T., & Shimada, K. (1994). Expression of intercellular adhesion molecule-1 on rat cardiac myocytes by monocyte chemoattractant protein-1. Cardiovascular Research, 28, 1258–1262.PubMedGoogle Scholar
  155. 155.
    Birdsall, H. H., Green, D. M., Trial, J., Youker, K. A., Burns, A. R., MacKay, C. R., et al. (1997). Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first 1–5 hours after reperfusion. Circulation, 95, 684–692.PubMedGoogle Scholar
  156. 156.
    Haudek, S. B., Cheng, J., Du, J., Wang, Y., Hermosillo-Rodriguez, J., Trial, J., et al. (2010). Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 49, 499–507.PubMedGoogle Scholar
  157. 157.
    Xu, J., Lin, S. C., Chen, J., Miao, Y., Taffet, G. E., Entman, M. L., et al. (2011). CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis. American Journal of Physiology—Heart and Circulatory Physiology, 301, H538–H547.PubMedGoogle Scholar
  158. 158.
    Mann, D. L., McMurray, J. J., Packer, M., Swedberg, K., Borer, J. S., Colucci, W. S., et al. (2004). Targeted anticytokine therapy in patients with chronic heart failure: Results of the randomized etanercept worldwide evaluation (renewal). Circulation, 109, 1594–1602.PubMedGoogle Scholar
  159. 159.
    Chung, E. S., Packer, M., Lo, K. H., Fasanmade, A. A., & Willerson, J. T. (2003). Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: Results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation, 107, 3133–3140.PubMedGoogle Scholar
  160. 160.
    Yang, L., Pang, Y., & Moses, H. L. (2010). TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends in Immunology, 31, 220–227.PubMedGoogle Scholar
  161. 161.
    Akhurst, R. J., & Derynck, R. (2001). TGF-beta signaling in cancer—A double-edged sword. Trends in Cell Biology, 11, S44–S51.PubMedGoogle Scholar
  162. 162.
    Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nature Genetics, 29, 117–129.PubMedGoogle Scholar
  163. 163.
    Elliott, R. L., & Blobe, G. C. (2005). Role of transforming growth factor beta in human cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23, 2078–2093.Google Scholar
  164. 164.
    Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332–337.PubMedGoogle Scholar
  165. 165.
    Luwor, R. B., Kaye, A. H., & Zhu, H. J. (2008). Transforming growth factor-beta (TGF-beta) and brain tumours. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 15, 845–855.Google Scholar
  166. 166.
    Guasch, G., Schober, M., Pasolli, H. A., Conn, E. B., Polak, L., & Fuchs, E. (2007). Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell, 12, 313–327.PubMedGoogle Scholar
  167. 167.
    Tang, B., Vu, M., Booker, T., Santner, S. J., Miller, F. R., Anver, M. R., et al. (2003). TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. The Journal of Clinical Investigation, 112, 1116–1124.PubMedGoogle Scholar
  168. 168.
    Wilson, E. M., Diwan, A., Spinale, F. G., & Mann, D. L. (2004). Duality of innate stress responses in cardiac injury, repair, and remodeling. Journal of Molecular and Cellular Cardiology, 37, 801–811.PubMedGoogle Scholar
  169. 169.
    Ikeuchi, M., Tsutsui, H., Shiomi, T., Matsusaka, H., Matsushima, S., Wen, J., et al. (2004). Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovascular Research, 64, 526–535.PubMedGoogle Scholar
  170. 170.
    Murray, D. R., & Freeman, G. L. (1996). Tumor necrosis factor-alpha induces a biphasic effect on myocardial contractility in conscious dogs. Circulation Research, 78, 154–160.PubMedGoogle Scholar
  171. 171.
    Niu, J., & Kolattukudy, P. E. (2009). Role of MCP-1 in cardiovascular disease: Molecular mechanisms and clinical implications. Clinical Science (London, England), 117, 95–109.Google Scholar
  172. 172.
    Morimoto, H., Takahashi, M., Izawa, A., Ise, H., Hongo, M., Kolattukudy, P. E., et al. (2006). Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circulation Research, 99, 891–899.PubMedGoogle Scholar
  173. 173.
    Morimoto, H., Hirose, M., Takahashi, M., Kawaguchi, M., Ise, H., Kolattukudy, P. E., et al. (2008). MCP-1 induces cardioprotection against ischaemia/reperfusion injury: Role of reactive oxygen species. Cardiovascular Research, 78, 554–562.PubMedGoogle Scholar
  174. 174.
    Tarzami, S. T., Calderon, T. M., Deguzman, A., Lopez, L., Kitsis, R. N., & Berman, J. W. (2005). MCP-1/CCL2 protects cardiac myocytes from hypoxia-induced apoptosis by a G(alphai)-independent pathway. Biochemical and Biophysical Research Communications, 335, 1008–1016.PubMedGoogle Scholar
  175. 175.
    Smith, R. M., Suleman, N., McCarthy, J., & Sack, M. N. (2002). Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFalpha gene. Cardiovascular Research, 55, 553–560.PubMedGoogle Scholar
  176. 176.
    Schulz, R., & Heusch, G. (2009). Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and yang in myocardial infarction? Circulation, 119, 1355–1357.PubMedGoogle Scholar
  177. 177.
    Hamid, T., Gu, Y., Ortines, R. V., Bhattacharya, C., Wang, G., Xuan, Y. T., et al. (2009). Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: Role of nuclear factor-kappaB and inflammatory activation. Circulation, 119, 1386–1397.PubMedGoogle Scholar
  178. 178.
    Monden, Y., Kubota, T., Inoue, T., Tsutsumi, T., Kawano, S., Ide, T., et al. (2007). Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. American Journal of Physiology—Heart and Circulatory Physiology, 293, H743–H753.PubMedGoogle Scholar
  179. 179.
    Garlie, J. B., Hamid, T., Gu, Y., Ismahil, M. A., Chandrasekar, B., & Prabhu, S. D. (2011). Tumor necrosis factor receptor 2 signaling limits beta-adrenergic receptor-mediated cardiac hypertrophy in vivo. Basic Research in Cardiology, 106, 1193–1205.PubMedGoogle Scholar
  180. 180.
    Casey, L. M., Pistner, A. R., Belmonte, S. L., Migdalovich, D., Stolpnik, O., Nwakanma, F. E., et al. (2010). Small molecule disruption of G beta gamma signaling inhibits the progression of heart failure. Circulation Research, 107, 532–539.PubMedGoogle Scholar
  181. 181.
    Strande, J. L., Hsu, A., Su, J., Fu, X., Gross, G. J., & Baker, J. E. (2007). SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Research in Cardiology, 102, 350–358.PubMedGoogle Scholar
  182. 182.
    Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., & Kuliopulos, A. (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 120, 303–313.PubMedGoogle Scholar
  183. 183.
    Trivedi, V., Boire, A., Tchernychev, B., Kaneider, N. C., Leger, A. J., O’Callaghan, K., et al. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 137, 332–343.PubMedGoogle Scholar
  184. 184.
    Blackburn, J. S., & Brinckerhoff, C. E. (2008). Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. American Journal of Pathology, 173, 1736–1746.PubMedGoogle Scholar
  185. 185.
    Vincenti, M. P., Coon, C. I., Mengshol, J. A., Yocum, S., Mitchell, P., & Brinckerhoff, C. E. (1998). Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: Differential expression with collagenase-1 (matrix metalloproteinase-1). The Biochemical Journal, 331(Pt 1), 341–346.PubMedGoogle Scholar
  186. 186.
    Foley, C. J., Luo, C., O’Callaghan, K., Hinds, P. W., Covic, L., & Kuliopulos, A. (2012). Matrix metalloprotease-1a promotes tumorigenesis and metastasis. Journal of Biological Chemistry, 287, 24330–24338.PubMedGoogle Scholar
  187. 187.
    Luttrell, D. K., & Luttrell, L. M. (2003). Signaling in time and space: G protein-coupled receptors and mitogen-activated protein kinases. Assay and Drug Development Technologies, 1, 327–338.PubMedGoogle Scholar
  188. 188.
    Henderson, B. C., Sen, U., Reynolds, C., Moshal, K. S., Ovechkin, A., Tyagi, N., et al. (2007). Reversal of systemic hypertension-associated cardiac remodeling in chronic pressure overload myocardium by ciglitazone. International Journal of Biological Sciences, 3, 385–392.PubMedGoogle Scholar
  189. 189.
    Seeland, U., Selejan, S., Engelhardt, S., Muller, P., Lohse, M. J., & Bohm, M. (2007). Interstitial remodeling in beta1-adrenergic receptor transgenic mice. Basic Research in Cardiology, 102, 183–193.PubMedGoogle Scholar
  190. 190.
    Peterson, J. T., Li, H., Dillon, L., & Bryant, J. W. (2000). Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovascular Research, 46, 307–315.PubMedGoogle Scholar
  191. 191.
    Jaffre, F., Friedman, A. E., Hu, Z., Mackman, N., & Blaxall, B. C. (2012). Beta-adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. Circulation, 125, 2993–3003.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Aab Cardiovascular Research Institute, Department of MedicineUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Aab Cardiovascular Research InstituteUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations