Journal of Cardiovascular Translational Research

, Volume 5, Issue 6, pp 794–804 | Cite as

The Actin–MRTF–SRF Gene Regulatory Axis and Myofibroblast Differentiation

  • Eric M. Small


Cardiac fibroblasts are responsible for necrotic tissue replacement and scar formation after myocardial infarction (MI) and contribute to remodeling in response to pathological stimuli. This response to insult or injury is largely due to the phenotypic plasticity of fibroblasts. When fibroblasts encounter environmental disturbances, whether biomechanical or humoral, they often transform into smooth muscle-like, contractile cells called “myofibroblasts.” The signals that control myofibroblast differentiation include the transforming growth factor (TGF)-β1–Smad pathway and Rho GTPase-dependent actin polymerization. Recent evidence implicates serum response factor (SRF) and the myocardin-related transcription factors (MRTFs) as key mediators of the contractile gene program in response to TGF-β1 or RhoA signaling. This review highlights the function of myofibroblasts in cardiac remodeling and the role of the actin–MRTF–SRF signaling axis in regulating this process.


Fibroblast Myofibroblast Actin Serum response factor Myocardin-related transcription factors Fibrosis 



I apologize to the many researchers whose work could not be cited owing to space restrictions. I thank Joe Miano for discussions and comments on the manuscript. This work was funded in part by a Scientist Development Grant from The American Heart Association.


  1. 1.
    Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. The New England Journal of Medicine, 358(13), 1370–1380. doi: 10.1056/NEJMra072139.PubMedGoogle Scholar
  2. 2.
    Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiological Reviews, 79(1), 215–262.PubMedGoogle Scholar
  3. 3.
    Kehat, I., & Molkentin, J. D. (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25), 2727–2735. doi: 10.1161/CIRCULATIONAHA.110.942268.PubMedGoogle Scholar
  4. 4.
    Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circulation Research, 91(12), 1103–1113.PubMedGoogle Scholar
  5. 5.
    Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5), 349–363.PubMedGoogle Scholar
  6. 6.
    Teekakirikul, P., Eminaga, S., Toka, O., Alcalai, R., Wang, L., Wakimoto, H., et al. (2010). Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. The Journal of Clinical Investigation, 120(10), 3520–3529. doi: 10.1172/JCI42028.PubMedGoogle Scholar
  7. 7.
    Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127(3), 526–537.PubMedGoogle Scholar
  8. 8.
    Serini, G., & Gabbiani, G. (1999). Mechanisms of myofibroblast activity and phenotypic modulation. Experimental Cell Research, 250(2), 273–283.PubMedGoogle Scholar
  9. 9.
    Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of Cell Biology, 122(1), 103–111.PubMedGoogle Scholar
  10. 10.
    Mayer, D. C., & Leinwand, L. A. (1997). Sarcomeric gene expression and contractility in myofibroblasts. The Journal of Cell Biology, 139(6), 1477–1484.PubMedGoogle Scholar
  11. 11.
    Desmouliere, A., Darby, I. A., & Gabbiani, G. (2003). Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Laboratory Investigation, 83(12), 1689–1707.PubMedGoogle Scholar
  12. 12.
    Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74(2), 184–195.PubMedGoogle Scholar
  13. 13.
    Bujak, M., Ren, G., Kweon, H. J., Dobaczewski, M., Reddy, A., Taffet, G., et al. (2007). Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 116(19), 2127–2138.PubMedGoogle Scholar
  14. 14.
    Norman, C., Runswick, M., Pollock, R., & Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 55(6), 989–1003.PubMedGoogle Scholar
  15. 15.
    Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., & Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. The EMBO Journal, 17(21), 6289–6299. doi: 10.1093/emboj/17.21.6289.PubMedGoogle Scholar
  16. 16.
    Miano, J. M. (2010). Role of serum response factor in the pathogenesis of disease. Laboratory Investigation, 90(9), 1274–1284. doi: 10.1038/labinvest.2010.104.PubMedGoogle Scholar
  17. 17.
    Parlakian, A., Tuil, D., Hamard, G., Tavernier, G., Hentzen, D., Concordet, J. P., et al. (2004). Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Molecular and Cellular Biology, 24(12), 5281–5289. doi: 10.1128/MCB.24.12.5281-5289.2004.PubMedGoogle Scholar
  18. 18.
    Miano, J. M., Ramanan, N., Georger, M. A., de Mesy Bentley, K. L., Emerson, R. L., Balza, R. O., Jr., et al. (2004). Restricted inactivation of serum response factor to the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17132–17137. doi: 10.1073/pnas.0406041101.PubMedGoogle Scholar
  19. 19.
    Niu, Z., Iyer, D., Conway, S. J., Martin, J. F., Ivey, K., Srivastava, D., et al. (2008). Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17824–17829. doi: 10.1073/pnas.0805491105.PubMedGoogle Scholar
  20. 20.
    Niu, Z., Yu, W., Zhang, S. X., Barron, M., Belaguli, N. S., Schneider, M. D., et al. (2005). Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. Journal of Biological Chemistry, 280(37), 32531–32538. doi: 10.1074/jbc.M501372200.PubMedGoogle Scholar
  21. 21.
    Parlakian, A., Charvet, C., Escoubet, B., Mericskay, M., Molkentin, J. D., Gary-Bobo, G., et al. (2005). Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation, 112(19), 2930–2939. doi: 10.1161/CIRCULATIONAHA.105.533778.PubMedGoogle Scholar
  22. 22.
    Gary-Bobo, G., Parlakian, A., Escoubet, B., Franco, C. A., Clement, S., Bruneval, P., et al. (2008). Mosaic inactivation of the serum response factor gene in the myocardium induces focal lesions and heart failure. European Journal of Heart Failure, 10(7), 635–645. doi: 10.1016/j.ejheart.2008.04.014.PubMedGoogle Scholar
  23. 23.
    Treisman, R. (1986). Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell, 46(4), 567–574.PubMedGoogle Scholar
  24. 24.
    Miano, J. M. (2003). Serum response factor: toggling between disparate programs of gene expression. Journal of Molecular and Cellular Cardiology, 35(6), 577–593.PubMedGoogle Scholar
  25. 25.
    Benson, C. C., Zhou, Q., Long, X., & Miano, J. M. (2011). Identifying functional single nucleotide polymorphisms in the human CArGome. Physiological Genomics, 43(18), 1038–1048. doi: 10.1152/physiolgenomics.00098.2011.PubMedGoogle Scholar
  26. 26.
    Shaw, P. E., Schroter, H., & Nordheim, A. (1989). The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell, 56(4), 563–572.PubMedGoogle Scholar
  27. 27.
    Chang, P. S., Li, L., McAnally, J., & Olson, E. N. (2001). Muscle specificity encoded by specific serum response factor-binding sites. Journal of Biological Chemistry, 276(20), 17206–17212. doi: 10.1074/jbc.M010983200.PubMedGoogle Scholar
  28. 28.
    Wang, D., Chang, P. S., Wang, Z., Sutherland, L., Richardson, J. A., Small, E., et al. (2001). Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 105(7), 851–862.PubMedGoogle Scholar
  29. 29.
    Du, K. L., Ip, H. S., Li, J., Chen, M., Dandre, F., Yu, W., et al. (2003). Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Molecular and Cellular Biology, 23(7), 2425–2437.PubMedGoogle Scholar
  30. 30.
    Small, E. M., Warkman, A. S., Wang, D. Z., Sutherland, L. B., Olson, E. N., & Krieg, P. A. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development, 132(5), 987–997.PubMedGoogle Scholar
  31. 31.
    Li, S., Wang, D. Z., Wang, Z., Richardson, J. A., & Olson, E. N. (2003). The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9366–9370.PubMedGoogle Scholar
  32. 32.
    Huang, J., Cheng, L., Li, J., Chen, M., Zhou, D., Lu, M. M., et al. (2008). Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. The Journal of Clinical Investigation, 118(2), 515–525. doi: 10.1172/JCI33304.PubMedGoogle Scholar
  33. 33.
    Hoofnagle, M. H., Neppl, R. L., Berzin, E. L., Teg Pipes, G. C., Olson, E. N., Wamhoff, B. W., et al. (2011). Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. American Journal of Physiology—Heart and Circulatory Physiology, 300(5), H1707–H1721. doi: 10.1152/ajpheart.01192.2010.PubMedGoogle Scholar
  34. 34.
    Wang, D. Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. (2002). Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 14855–14860.PubMedGoogle Scholar
  35. 35.
    Miralles, F., Posern, G., Zaromytidou, A. I., & Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113(3), 329–342.PubMedGoogle Scholar
  36. 36.
    Guettler, S., Vartiainen, M. K., Miralles, F., Larijani, B., & Treisman, R. (2008). RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding. Molecular and Cellular Biology, 28(2), 732–742.PubMedGoogle Scholar
  37. 37.
    Mouilleron, S., Langer, C. A., Guettler, S., McDonald, N. Q., & Treisman, R. (2011). Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Science Signaling, 4(177), ra40. doi: 10.1126/scisignal.2001750.PubMedGoogle Scholar
  38. 38.
    Cen, B., Selvaraj, A., Burgess, R. C., Hitzler, J. K., Ma, Z., Morris, S. W., et al. (2003). Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Molecular and Cellular Biology, 23(18), 6597–6608.PubMedGoogle Scholar
  39. 39.
    Hinson, J. S., Medlin, M. D., Lockman, K., Taylor, J. M., & Mack, C. P. (2007). Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. American Journal of Physiology—Heart and Circulatory Physiology, 292(2), H1170–H1180. doi: 10.1152/ajpheart.00864.2006.PubMedGoogle Scholar
  40. 40.
    Vartiainen, M. K., Guettler, S., Larijani, B., & Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316(5832), 1749–1752. doi: 10.1126/science.1141084.PubMedGoogle Scholar
  41. 41.
    Selvaraj, A., & Prywes, R. (2004). Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Molecular Biology, 5, 13. doi: 10.1186/1471-2199-5-13.PubMedGoogle Scholar
  42. 42.
    Olson, E. N., & Nordheim, A. (2010). Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Reviews Molecular Cell Biology, 11(5), 353–365. doi: 10.1038/nrm2890.PubMedGoogle Scholar
  43. 43.
    Posern, G., & Treisman, R. (2006). Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends in Cell Biology, 16(11), 588–596. doi: 10.1016/j.tcb.2006.09.008.PubMedGoogle Scholar
  44. 44.
    Liu, Z. P., Wang, Z., Yanagisawa, H., & Olson, E. N. (2005). Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Developmental Cell, 9(2), 261–270. doi: 10.1016/j.devcel.2005.05.017.PubMedGoogle Scholar
  45. 45.
    Small, E. M., Thatcher, J. E., Sutherland, L. B., Kinoshita, H., Gerard, R. D., Richardson, J. A., et al. (2010). Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circulation Research, 107(2), 294–304. doi: 10.1161/CIRCRESAHA.110.223172.PubMedGoogle Scholar
  46. 46.
    Tomasek, J. J., McRae, J., Owens, G. K., & Haaksma, C. J. (2005). Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. American Journal of Pathology, 166(5), 1343–1351.PubMedGoogle Scholar
  47. 47.
    Tomasek, J. J., Vaughan, M. B., Kropp, B. P., Gabbiani, G., Martin, M. D., Haaksma, C. J., et al. (2006). Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 14(3), 313–320. doi: 10.1111/j.1743-6109.2006.00126.x.Google Scholar
  48. 48.
    Crider, B. J., Risinger, G. M., Jr., Haaksma, C. J., Howard, E. W., & Tomasek, J. J. (2011). Myocardin-related transcription factors A and B are key regulators of TGF-beta1-induced fibroblast to myofibroblast differentiation. The Journal of Investigative Dermatology, 131(12), 2378–2385. doi: 10.1038/jid.2011.219.PubMedGoogle Scholar
  49. 49.
    Sun, Q., Taurin, S., Sethakorn, N., Long, X., Imamura, M., Wang, D. Z., et al. (2009). Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. Journal of Biological Chemistry, 284(47), 32582–32590. doi: 10.1074/jbc.M109.033910.PubMedGoogle Scholar
  50. 50.
    Sandbo, N., Kregel, S., Taurin, S., Bhorade, S., & Dulin, N. O. (2009). Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta. American Journal of Respiratory Cell and Molecular Biology, 41(3), 332–338. doi: 10.1165/rcmb.2008-0288OC.PubMedGoogle Scholar
  51. 51.
    Luchsinger, L. L., Patenaude, C. A., Smith, B. D., & Layne, M. D. (2011). Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. Journal of Biological Chemistry, 286(51), 44116–44125. doi: 10.1074/jbc.M111.276931.PubMedGoogle Scholar
  52. 52.
    Sebe, A., Erdei, Z., Varga, K., Bodor, C., Mucsi, I., & Rosivall, L. (2010). Cdc42 regulates myocardin-related transcription factor nuclear shuttling and alpha-smooth muscle actin promoter activity during renal tubular epithelial-mesenchymal transition. Nephron Experimental Nephrology, 114(3), e117–e125. doi: 10.1159/000265550.PubMedGoogle Scholar
  53. 53.
    Masszi, A., Fan, L., Rosivall, L., McCulloch, C. A., Rotstein, O. D., Mucsi, I., et al. (2004). Integrity of cell–cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. American Journal of Pathology, 165(6), 1955–1967.PubMedGoogle Scholar
  54. 54.
    Fan, L., Sebe, A., Peterfi, Z., Masszi, A., Thirone, A. C., Rotstein, O. D., et al. (2007). Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Molecular Biology of the Cell, 18(3), 1083–1097.PubMedGoogle Scholar
  55. 55.
    Elberg, G., Chen, L., Elberg, D., Chan, M. D., Logan, C. J., & Turman, M. A. (2008). MKL1 mediates TGF-beta1-induced alpha-smooth muscle actin expression in human renal epithelial cells. American Journal of Physiology. Renal Physiology, 294(5), F1116–F1128.PubMedGoogle Scholar
  56. 56.
    Busche, S., Descot, A., Julien, S., Genth, H., & Posern, G. (2008). Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling. Journal of Cell Science, 121(Pt 7), 1025–1035. doi: 10.1242/jcs.014456.PubMedGoogle Scholar
  57. 57.
    Busche, S., Kremmer, E., & Posern, G. (2010). E-cadherin regulates MAL-SRF-mediated transcription in epithelial cells. Journal of Cell Science, 123(Pt 16), 2803–2809. doi: 10.1242/jcs.061887.PubMedGoogle Scholar
  58. 58.
    Charbonney, E., Speight, P., Masszi, A., Nakano, H., & Kapus, A. (2011). β-Catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial–myofibroblast transition. Molecular Biology of the Cell, 22(23), 4472–4485. doi: 10.1091/mbc.E11-04-0335.PubMedGoogle Scholar
  59. 59.
    Kuwahara, K., Kinoshita, H., Kuwabara, Y., Nakagawa, Y., Usami, S., Minami, T., et al. (2010). Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Molecular and Cellular Biology, 30(17), 4134–4148. doi: 10.1128/MCB.00154-10.PubMedGoogle Scholar
  60. 60.
    McGee, K. M., Vartiainen, M. K., Khaw, P. T., Treisman, R., & Bailly, M. (2011). Nuclear transport of the serum response factor coactivator MRTF-A is downregulated at tensional homeostasis. EMBO Reports, 12(9), 963–970. doi: 10.1038/embor.2011.141.PubMedGoogle Scholar
  61. 61.
    Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961.PubMedGoogle Scholar
  62. 62.
    Humphreys, B. D., Lin, S. L., Kobayashi, A., Hudson, T. E., Nowlin, B. T., Bonventre, J. V., et al. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. American Journal of Pathology, 176(1), 85–97. doi: 10.2353/ajpath.2010.090517.PubMedGoogle Scholar
  63. 63.
    Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P., & Owens, G. K. (2001). Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. Journal of Biological Chemistry, 276(1), 341–347.PubMedGoogle Scholar
  64. 64.
    Liu, H. W., Halayko, A. J., Fernandes, D. J., Harmon, G. S., McCauley, J. A., Kocieniewski, P., et al. (2003). The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. American Journal of Respiratory Cell and Molecular Biology, 29(1), 39–47. doi: 10.1165/rcmb.2002-0206OC.PubMedGoogle Scholar
  65. 65.
    Sotiropoulos, A., Gineitis, D., Copeland, J., & Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98(2), 159–169.PubMedGoogle Scholar
  66. 66.
    Chan, M. W., Chaudary, F., Lee, W., Copeland, J. W., & McCulloch, C. A. (2010). Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). Journal of Biological Chemistry, 285(12), 9273–9281. doi: 10.1074/jbc.M109.075218.PubMedGoogle Scholar
  67. 67.
    Wang, J., Chen, H., Seth, A., & McCulloch, C. A. (2003). Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. American Journal of Physiology—Heart and Circulatory Physiology, 285(5), H1871–H1881.PubMedGoogle Scholar
  68. 68.
    Zhao, X. H., Laschinger, C., Arora, P., Szaszi, K., Kapus, A., & McCulloch, C. A. (2007). Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. Journal of Cell Science, 120(Pt 10), 1801–1809.PubMedGoogle Scholar
  69. 69.
    Kuwahara, K., Barrientos, T., Pipes, G. C., Li, S., & Olson, E. N. (2005). Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Molecular and Cellular Biology, 25(8), 3173–3181.PubMedGoogle Scholar
  70. 70.
    Kuwahara, K., Teg Pipes, G. C., McAnally, J., Richardson, J. A., Hill, J. A., Bassel-Duby, R., et al. (2007). Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. The Journal of Clinical Investigation, 117(5), 1324–1334.PubMedGoogle Scholar
  71. 71.
    Hao, J., Ju, H., Zhao, S., Junaid, A., Scammell-La Fleur, T., & Dixon, I. M. (1999). Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. Journal of Molecular and Cellular Cardiology, 31(3), 667–678.PubMedGoogle Scholar
  72. 72.
    Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X. F., et al. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circulation Research, 107(3), 418–428. doi: 10.1161/CIRCRESAHA.109.216101.PubMedGoogle Scholar
  73. 73.
    Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95(3), 253–260.PubMedGoogle Scholar
  74. 74.
    Qiu, P., Feng, X. H., & Li, L. (2003). Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 35(12), 1407–1420.PubMedGoogle Scholar
  75. 75.
    Qiu, P., Ritchie, R. P., Fu, Z., Cao, D., Cumming, J., Miano, J. M., et al. (2005). Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: smad-binding element is an important cis element for SM22alpha transcription in vivo. Circulation Research, 97(10), 983–991.PubMedGoogle Scholar
  76. 76.
    Morita, T., Mayanagi, T., & Sobue, K. (2007). Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. The Journal of Cell Biology, 179(5), 1027–1042.PubMedGoogle Scholar
  77. 77.
    Masszi, A., Speight, P., Charbonney, E., Lodyga, M., Nakano, H., Szaszi, K., et al. (2010). Fate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3. The Journal of Cell Biology, 188(3), 383–399. doi: 10.1083/jcb.200906155.PubMedGoogle Scholar
  78. 78.
    Muehlich, S., Wang, R., Lee, S. M., Lewis, T. C., Dai, C., & Prywes, R. (2008). Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Molecular and Cellular Biology, 28(20), 6302–6313. doi: 10.1128/MCB.00427-08.PubMedGoogle Scholar
  79. 79.
    Nakagawa, K., & Kuzumaki, N. (2005). Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 10(8), 835–850. doi: 10.1111/j.1365-2443.2005.00880.x.Google Scholar
  80. 80.
    Hinson, J. S., Medlin, M. D., Taylor, J. M., & Mack, C. P. (2008). Regulation of myocardin factor protein stability by the LIM-only protein FHL2. American Journal of Physiology—Heart and Circulatory Physiology, 295(3), H1067–H1075. doi: 10.1152/ajpheart.91421.2007.PubMedGoogle Scholar
  81. 81.
    Wixler, V., Hirner, S., Muller, J. M., Gullotti, L., Will, C., Kirfel, J., et al. (2007). Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. The Journal of Cell Biology, 177(1), 163–172. doi: 10.1083/jcb.200606043.PubMedGoogle Scholar
  82. 82.
    Philippar, U., Schratt, G., Dieterich, C., Muller, J. M., Galgoczy, P., Engel, F. B., et al. (2004). The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Molecular Cell, 16(6), 867–880.PubMedGoogle Scholar
  83. 83.
    Sepulveda, J. L., Vlahopoulos, S., Iyer, D., Belaguli, N., & Schwartz, R. J. (2002). Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. Journal of Biological Chemistry, 277(28), 25775–25782. doi: 10.1074/jbc.M203122200.PubMedGoogle Scholar
  84. 84.
    Miralles, F., & Visa, N. (2006). Actin in transcription and transcription regulation. Current Opinion in Cell Biology, 18(3), 261–266. doi: 10.1016/ Scholar
  85. 85.
    Martin, K. A., Gualberto, A., Kolman, M. F., Lowry, J., & Walsh, K. (1997). A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. DNA and Cell Biology, 16(5), 653–661.PubMedGoogle Scholar
  86. 86.
    Chen, C. Y., & Schwartz, R. J. (1997). Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Molecular Endocrinology, 11(6), 812–822.PubMedGoogle Scholar
  87. 87.
    Ellis, P. D., Martin, K. M., Rickman, C., Metcalfe, J. C., & Kemp, P. R. (2002). Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1. The Biochemical Journal, 364(Pt 2), 547–554. doi: 10.1042/BJ20020269.PubMedGoogle Scholar
  88. 88.
    Somogyi, K., & Rorth, P. (2004). Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Developmental Cell, 7(1), 85–93. doi: 10.1016/j.devcel.2004.05.020.PubMedGoogle Scholar
  89. 89.
    Han, Z., Li, X., Wu, J., & Olson, E. N. (2004). A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12567–12572. doi: 10.1073/pnas.0405085101.PubMedGoogle Scholar
  90. 90.
    Li, J., Zhu, X., Chen, M., Cheng, L., Zhou, D., Lu, M. M., et al. (2005). Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8916–8921. doi: 10.1073/pnas.0503741102.PubMedGoogle Scholar
  91. 91.
    Oh, J., Richardson, J. A., & Olson, E. N. (2005). Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15122–15127.PubMedGoogle Scholar
  92. 92.
    Mokalled, M. H., Johnson, A., Kim, Y., Oh, J., & Olson, E. N. (2010). Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development, 137(14), 2365–2374. doi: 10.1242/dev.047605.PubMedGoogle Scholar
  93. 93.
    Li, S., Chang, S., Qi, X., Richardson, J. A., & Olson, E. N. (2006). Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Molecular and Cellular Biology, 26(15), 5797–5808.PubMedGoogle Scholar
  94. 94.
    Sun, Y., Boyd, K., Xu, W., Ma, J., Jackson, C. W., Fu, A., et al. (2006). Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Molecular and Cellular Biology, 26(15), 5809–5826. doi: 10.1128/MCB.00024-06.PubMedGoogle Scholar
  95. 95.
    Rikitake, Y., Oyama, N., Wang, C. Y., Noma, K., Satoh, M., Kim, H. H., et al. (2005). Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/− haploinsufficient mice. Circulation, 112(19), 2959–2965. doi: 10.1161/CIRCULATIONAHA.105.584623.PubMedGoogle Scholar
  96. 96.
    Haudek, S. B., Gupta, D., Dewald, O., Schwartz, R. J., Wei, L., Trial, J., et al. (2009). Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovascular Research, 83(3), 511–518. doi: 10.1093/cvr/cvp135.PubMedGoogle Scholar
  97. 97.
    Hamid, S. A., Bower, H. S., & Baxter, G. F. (2007). Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American Journal of Physiology—Heart and Circulatory Physiology, 292(6), H2598–H2606.PubMedGoogle Scholar
  98. 98.
    Zhang, Y. M., Bo, J., Taffet, G. E., Chang, J., Shi, J., Reddy, A. K., et al. (2006). Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. The FASEB Journal, 20(7), 916–925.Google Scholar
  99. 99.
    Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi: 10.1073/pnas.0608799103.PubMedGoogle Scholar
  100. 100.
    Allingham, J. S., Klenchin, V. A., & Rayment, I. (2006). Actin-targeting natural products: structures, properties and mechanisms of action. Cellular and Molecular Life Sciences: CMLS, 63(18), 2119–2134. doi: 10.1007/s00018-006-6157-9.PubMedGoogle Scholar
  101. 101.
    Hattori, T., Shimokawa, H., Higashi, M., Hiroki, J., Mukai, Y., Tsutsui, H., et al. (2004). Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation, 109(18), 2234–2239.PubMedGoogle Scholar
  102. 102.
    Satoh, S., Ikegaki, I., Toshima, Y., Watanabe, A., Asano, T., & Shimokawa, H. (2002). Effects of Rho-kinase inhibitor on vasopressin-induced chronic myocardial damage in rats. Life Sciences, 72(1), 103–112.PubMedGoogle Scholar
  103. 103.
    Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R., & Dagenais, G. (2000). Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. The New England Journal of Medicine, 342(3), 145–153.PubMedGoogle Scholar
  104. 104.
    Varga, J., & Pasche, B. (2009). Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nature Reviews. Rheumatology, 5(4), 200–206. doi: 10.1038/nrrheum.2009.26.PubMedGoogle Scholar
  105. 105.
    Fukumoto, Y., Matoba, T., Ito, A., Tanaka, H., Kishi, T., Hayashidani, S., et al. (2005). Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart, 91(3), 391–392.PubMedGoogle Scholar
  106. 106.
    Kishi, T., Hirooka, Y., Masumoto, A., Ito, K., Kimura, Y., Inokuchi, K., et al. (2005). Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation, 111(21), 2741–2747.PubMedGoogle Scholar
  107. 107.
    Masumoto, A., Mohri, M., Shimokawa, H., Urakami, L., Usui, M., & Takeshita, A. (2002). Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation, 105(13), 1545–1547.PubMedGoogle Scholar
  108. 108.
    Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16(2), 233–244. doi: 10.1016/j.devcel.2008.12.007.PubMedGoogle Scholar
  109. 109.
    Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. doi: 10.1038/nature11044.
  110. 110.
    Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485(7400), 599–604. doi: 10.1038/nature11139.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Aab Cardiovascular Research Institute, Department of Medicine, School of Medicine and DentistryUniversity of RochesterRochesterUSA

Personalised recommendations