Journal of Cardiovascular Translational Research

, Volume 5, Issue 5, pp 689–699

What’s New in Regenerative Medicine: Split up of the Mesenchymal Stem Cell Family Promises New Hope for Cardiovascular Repair

  • Rosa Vono
  • Gaia Spinetti
  • Miriam Gubernator
  • Paolo Madeddu
Article

Abstract

Coronary artery disease (CAD) is exceedingly prevalent and requires care optimization. Regenerative medicine holds promise to improve the clinical outcome of CAD patients. Current approach consists in subsidizing the infarcted heart with boluses of autologous stem cells from the bone marrow. Moreover, mesenchymal stem cells (MSCs) are in the focus of intense research owing to an apparent superiority in plasticity and regenerative capacity compared with hematopoietic stem cells. In this review, we report recent findings indicating the presence, within the heterogeneous MSC population, of perivascular stem cells expressing typical pericyte markers. Moreover, we focus on recent research showing the presence of similar cells in the adventitia of large vessels. These discoveries were fundamental to shape a roadmap toward clinical application in patients with myocardial ischemia. Adventitial stem cells are ideal candidates for promotion of cardiac repair owing to their ease of accessibility and expandability and potent vasculogenic activity.

Keywords

Coronary artery disease Regenerative medicine Mesenchymal stem cells Pericytes 

Abbreviations

aMI

Acute myocardial infarction

ATMP

Advanced therapy medicinal product

ANP

Atrial natriuretic peptide

BM

Bone marrow

BMP-2

Bone morphogenetic protein 2

CO

Cardiac output

CPCs

Cardiac progenitor cells

CSCs

Cardiac stem cells

cTnT

Cardiac troponin

CABG

Coronary artery bypass graft

CAD

Coronary artery disease

CLI

Critical limb ischemia

FA-MSCs

Foetal aorta-derived mesenchymal stem cells

EGM2

Endothelial growth medium

EMEA

European Medicine Agency

HF

Heart failure

HGF

Hepatocyte growth factor

hMSCs

Human MSCs

HTA

Human Tissue Authority

IGF-1

Insulin-like growth factor 1

sLex

Lewisx

LVEF

Left ventricular ejection fraction

MSCs

Mesenchymal stem cells

MeCP2

Methyl-CpG-binding protein 2

miR-132

microRNA-132

(β-MHC)

β-myosin heavy chain

MHRA

Medicine and Healthcare products Regulatory Agency

NHSBT

National Health System Blood and Transplant

Dll4

Notch delta-like 4 ligand

PB

Peripheral blood

PDGF-BB

Platelet-derived growth factor-BB

PODXL

Podocalyxin-like protein 1

PSGL-1

P-selectin glycoprotein ligand 1

RasGAP

Ras-GTPase activating protein

SOP

Standard operating protocol

SDF-1

Stromal cell-derived factor-1

TGFβ1

Transforming growth factor β1

VEGF

Vascular endothelial growth factor

vWF

von Willerbrand Factor

References

  1. 1.
    Strauer, B. E., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Ieda, M., and Fukuda, K. (2012). Cardiomyocyte generation using stem cells and directly reprogrammed cells. Front Biosci (Schol Ed), 4, p. 1413–23.Google Scholar
  3. 3.
    Assmus, B., et al. (2002). Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106(24), 3009–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Psaltis, P. J., et al. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26(9), 2201–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Martin-Rendon, E., et al. (2008). Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. European Heart Journal, 29(15), 1807–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45(4), 530–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Oikawa, A., et al. (2010). Diabetes mellitus induces bone marrow microangiopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(3), 498–508.PubMedCrossRefGoogle Scholar
  8. 8.
    Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28(3), 585–96.PubMedGoogle Scholar
  9. 9.
    Gnecchi, M., Danieli, P., & Cervio E. (2012). Mesenchymal stem cell therapy for heart disease. Vascul Pharmacol, 57(1), 48–55.Google Scholar
  10. 10.
    Dupont, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474(7350), 179–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Shi, Y., et al. (2012). How mesenchymal stem cells interact with tissue immune responses. Trends in Immunology, 33(3), 136–43.PubMedCrossRefGoogle Scholar
  12. 12.
    Bartunek, J., et al. (2008). Mesenchymal stem cells and cardiac repair: principles and practice. Journal of Cardiovascular Translational Research, 1(2), 115–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Mansilla, E., et al. (2006). Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplantation Proceedings, 38(3), 967–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Ceradini, D. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Wynn, R. F., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104(9), 2643–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Sarkar, D., et al. (2008). Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjugate Chemistry, 19(11), 2105–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Sarkar, D., et al. (2010). Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials, 31(19), 5266–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Toma, C., et al. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Huang, X. P., et al. (2010). Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation, 122(23), 2419–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Quevedo, H. C., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–7.PubMedCrossRefGoogle Scholar
  22. 22.
    He, Z., et al. (2011). Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells and Development, 20(10), 1771–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Armiñán, A., et al. (2009). Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Development, 18(6), 907–18.PubMedCrossRefGoogle Scholar
  24. 24.
    Durocher, D., et al. (1997). The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO Journal, 16(18), 5687–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Chang, S. A., et al. (2008). Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: effect of acute myocardial infarction on stem cell differentiation. Stem Cells, 26(7), 1901–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeong, J. O., et al. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research, 108(11), 1340–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Rose, R. A., Keating, A., & Backx, P. H. (2008). Do mesenchymal stromal cells transdifferentiate into functional cardiomyocytes? Circulation Research, 103(9), e120.PubMedCrossRefGoogle Scholar
  29. 29.
    Siegel, G., et al. (2012). Bone Marrow-Derived Human Mesenchymal Stem Cells Express Cardiomyogenic Proteins But Do Not Exhibit Functional Cardiomyogenic Differentiation Potential. Stem Cells Dev. doi:10.1089/scd.2011.0626.
  30. 30.
    Lai, R. C., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Nakanishi, C., et al. (2008). Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 374(1), 11–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Dellavalle, A., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9(3), 255–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Morosetti, R., et al. (2011). Mesoangioblasts of inclusion-body myositis: a twofold tool to study pathogenic mechanisms and enhance defective muscle regeneration. Acta Myol, 30(1), 24–8.PubMedGoogle Scholar
  34. 34.
    Bosch, J., et al. (2012). Distinct Differentiation Potential of “MSC” Derived from Cord Blood and Umbilical Cord: Are Cord-Derived Cells True Mesenchymal Stromal Cells? Stem Cells Dev, 21(11), 1977–88.Google Scholar
  35. 35.
    Invernici, G., et al. (2008). Human fetal aorta-derived vascular progenitor cells: identification and potential application in ischemic diseases. Cytotechnology, 58(1), 43–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Corselli, M., et al. (2012). The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells and Development, 21(8), 1299–308.PubMedCrossRefGoogle Scholar
  37. 37.
    Crisan, M., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Ergün, S., Tilki, D., & Klein, D. (2011). Vascular wall as a reservoir for different types of stem and progenitor cells. Antioxidants & Redox Signaling, 15(4), 981–95.CrossRefGoogle Scholar
  39. 39.
    Klein, D., et al. (2011). Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One, 6(5), e20540.PubMedCrossRefGoogle Scholar
  40. 40.
    Campagnolo, P., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121(15), 1735–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Dellavalle, A., et al. (2011). Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature Communications, 2, 499.PubMedCrossRefGoogle Scholar
  42. 42.
    Galvez, B. G., et al. (2008). Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 15(9), 1417–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Pasquinelli, G., et al. (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25(7), 1627–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Zimmerlin, L., et al. (2011). Stromal vascular progenitors in adult human adipose tissue. Cytometry. Part A, 77(1), 22–30.Google Scholar
  45. 45.
    Cai, X., et al. (2009). Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Reviews, 5(4), 437–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Hirschi, K. K., & D’Amore, P. A. (1996). Pericytes in the microvasculature. Cardiovascular Research, 32(4), 687–98.PubMedGoogle Scholar
  47. 47.
    Stewart, K. S., et al. (2011). Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood, 117(2), 719–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Al Haj Zen, A., et al. (2010). Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circulation Research, 107(2), 283–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Brighton, C. T., et al. (1992). The pericyte as a possible osteoblast progenitor cell. Clinical Orthopaedics and Related Research, 275, 287–99.PubMedGoogle Scholar
  50. 50.
    Diaz-Flores, L., et al. (1992). Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clinical Orthopaedics and Related Research, 275, 280–6.PubMedGoogle Scholar
  51. 51.
    Richardson, R. L., Hausman, G. J., & Campion, D. R. (1982). Response of pericytes to thermal lesion in the inguinal fat pad of 10-day-old rats. Acta Anat (Basel), 114(1), 41–57.CrossRefGoogle Scholar
  52. 52.
    Barcelos, L. S., et al. (2009). Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circulation Research, 104(9), 1095–102.PubMedCrossRefGoogle Scholar
  53. 53.
    Invernici, G., et al. (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. American Journal of Pathology, 170(6), 1879–92.PubMedCrossRefGoogle Scholar
  54. 54.
    Katare, R., et al. (2011). Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation Research, 109(8), 894–906.PubMedCrossRefGoogle Scholar
  55. 55.
    Fossett, E., et al. (2012). Effect of age and gender on cell proliferation and cell surface characterization of synovial fat pad derived mesenchymal stem cells. Journal of Orthopaedic Research, 30(7), 1013–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Stolzing, A., et al. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development, 129(3), 163–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Muschler, G. F., et al. (2001). Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. Journal of Orthopaedic Research, 19(1), 117–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Ray, R., et al. (2008). Sex steroids and stem cell function. Molecular Medicine, 14(7–8), 493–501.PubMedGoogle Scholar
  59. 59.
    Barile, L., et al. (2007). Endogenous cardiac stem cells. Progress in Cardiovascular Diseases, 50(1), 31–48.PubMedCrossRefGoogle Scholar
  60. 60.
    Anversa, P., & Kajstura, J. (1998). Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circulation Research, 83(1), 1–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Urbanek, K., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–31.PubMedCrossRefGoogle Scholar
  62. 62.
    Linke, A., et al. (2005). Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8966–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Urbanek, K., et al. (2005). Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8692–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Makkar, R. R., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 379(9819), 895–904.PubMedCrossRefGoogle Scholar
  65. 65.
    Lahteenvuo, J. E., et al. (2009). Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation, 119(6), 845–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rosa Vono
    • 1
  • Gaia Spinetti
    • 1
  • Miriam Gubernator
    • 2
  • Paolo Madeddu
    • 2
  1. 1.Multimedica IRCCSMilanItaly
  2. 2.Experimental Cardiovascular Medicine, Regenerative Medicine Section, Bristol Heart InstituteSchool of Clinical Sciences, University of BristolBristolUK

Personalised recommendations