Chromatin Modifications Associated with Diabetes



Accelerated rates of vascular complications are associated with diabetes mellitus. Environmental factors including hyperglycaemia contribute to the progression of diabetic complications. Epidemiological and experimental animal studies identified poor glycaemic control as a major contributor to the development of complications. These studies suggest that early exposure to hyperglycaemia can instigate the development of complications that present later in the progression of the disease, despite improved glycaemic control. Recent experiments reveal a striking commonality associated with gene-activating hyperglycaemic events and chromatin modification. The best characterised to date are associated with the chemical changes of amino-terminal tails of histone H3. Enzymes that write specified histone tail modifications are not well understood in models of hyperglycaemia and metabolic memory as well as human diabetes. The best-characterised enzyme is the lysine specific Set7 methyltransferase. The contribution of Set7 to the aetiology of diabetic complications may extend to other transcriptional events through methylation of non-histone substrates.


Diabetic complications Diabetes Epigenetic gene regulation Set7 methyltransferase Hyperglycaemia Histone methylation Metabolic memory DNA methylation Histone acetylation 



The authors acknowledge grant and fellowship support from the Juvenile Diabetes Research Foundation International, the Diabetes Australia Research Trust, the National Health and Medical Research Council (NHMRC) and the National Heart Foundation of Australia. STK is supported by an Australian Postgraduate Award. AE-O is a senior research fellow supported by the NHMRC. This study is supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Conflict of Interest



  1. 1.
    International Diabetes Federation. (2009). IDF diabetes atlas (4th ed.). Brussels: International Diabetes Federation.Google Scholar
  2. 2.
    Shaw, J. E., & Chisholm, D. J. (2003). 1: Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. The Medical Journal of Australia, 179(7), 379–383.PubMedGoogle Scholar
  3. 3.
    El-Osta, A. (2012). Glycemic memory. Current Opinion in Lipidology, 23(1), 24–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813–820.PubMedCrossRefGoogle Scholar
  5. 5.
    Anonymous (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. New England Journal of Medicine, 329(14), 977–986.Google Scholar
  6. 6.
    Prospective, U. K. (1991). Diabetes study (UKPDS). VIII. Study design, progress and performance. Diabetologia, 34(12), 877–890.CrossRefGoogle Scholar
  7. 7.
    The Diabetes Control and Complications Trial (DCCT). (1986). Design and methodologic considerations for the feasibility phase. The DCCT research group. Diabetes, 35(5), 530–545.CrossRefGoogle Scholar
  8. 8.
    Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2003). Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA, 290(16), 2159–2167.CrossRefGoogle Scholar
  9. 9.
    Nathan, D. M., Cleary, P. A., Backlund, J. Y., et al. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The New England Journal of Medicine, 353(25), 2643–2653.PubMedCrossRefGoogle Scholar
  10. 10.
    Cleary, P. A., Orchard, T. J., Genuth, S., et al. (2006). The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes, 55(12), 3556–3565.PubMedCrossRefGoogle Scholar
  11. 11.
    Nathan, D. M., Lachin, J., Cleary, P., et al. (2003). Intensive diabetes therapy and carotid intima–media thickness in type 1 diabetes mellitus. The New England Journal of Medicine, 348(23), 2294–2303.PubMedCrossRefGoogle Scholar
  12. 12.
    Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R., & Neil, H. A. (2008). 10-year follow-up of intensive glucose control in type 2 diabetes. The New England Journal of Medicine, 359(15), 1577–1589.PubMedCrossRefGoogle Scholar
  13. 13.
    Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2002). Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA, 287(19), 2563–2569.CrossRefGoogle Scholar
  14. 14.
    Engerman, R. L., & Kern, T. S. (1987). Progression of incipient diabetic retinopathy during good glycemic control. Diabetes, 36(7), 808–812.PubMedCrossRefGoogle Scholar
  15. 15.
    Hammes, H. P., Klinzing, I., Wiegand, S., Bretzel, R. G., Cohen, A. M., & Federlin, K. (1993). Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investigative Ophthalmology & Visual Science, 34(6), 2092–2096.Google Scholar
  16. 16.
    Kowluru, R. A. (2003). Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes, 52(3), 818–823.PubMedCrossRefGoogle Scholar
  17. 17.
    El-Osta, A., Brasacchio, D., Yao, D., et al. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205(10), 2409–2417.PubMedCrossRefGoogle Scholar
  18. 18.
    Thurberg, B. L., & Collins, T. (1998). The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Current Opinion in Lipidology, 9(5), 387–396.PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis, P., Stefanovic, N., Pete, J., et al. (2007). Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation, 115(16), 2178–2187.PubMedCrossRefGoogle Scholar
  20. 20.
    Bakker, W., Eringa, E. C., Sipkema, P., & van Hinsbergh, V. W. (2009). Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell and Tissue Research, 335(1), 165–189.PubMedCrossRefGoogle Scholar
  21. 21.
    Roy, S., Sala, R., Cagliero, E., & Lorenzi, M. (1990). Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 404–408.PubMedCrossRefGoogle Scholar
  22. 22.
    Nishikawa, T., Edelstein, D., Du, X. L., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404(6779), 787–790.PubMedCrossRefGoogle Scholar
  23. 23.
    Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615–1625.PubMedCrossRefGoogle Scholar
  24. 24.
    Ihnat, M. A., Thorpe, J. E., Kamat, C. D., et al. (2007). Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia, 50(7), 1523–1531.PubMedCrossRefGoogle Scholar
  25. 25.
    Turner, B. M. (2002). Cellular memory and the histone code. Cell, 111(3), 285–291.PubMedCrossRefGoogle Scholar
  26. 26.
    Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.PubMedCrossRefGoogle Scholar
  27. 27.
    Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.PubMedCrossRefGoogle Scholar
  28. 28.
    Greer, E. L., Maures, T. J., Ucar, D., et al. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373), 365–371.PubMedCrossRefGoogle Scholar
  29. 29.
    Braunschweig, M., Jagannathan, V., Gutzwiller, A., & Bee, G. (2012). Investigations on transgenerational epigenetic response down the male line in f2 pigs. PLoS One, 7(2), e30583.PubMedCrossRefGoogle Scholar
  30. 30.
    Iguchi-Ariga, S. M., & Schaffner, W. (1989). CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes & Development, 3(5), 612–619.CrossRefGoogle Scholar
  31. 31.
    Pennings, S., Allan, J., & Davey, C. S. (2005). DNA methylation, nucleosome formation and positioning. Briefings in Functional Genomics & Proteomics, 3(4), 351–361.CrossRefGoogle Scholar
  32. 32.
    Chodavarapu, R. K., Feng, S., Bernatavichute, Y. V., et al. (2010). Relationship between nucleosome positioning and DNA methylation. Nature, 466(7304), 388–392.PubMedCrossRefGoogle Scholar
  33. 33.
    Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P., & Kouzarides, T. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. Journal of Biological Chemistry, 278(6), 4035–4040.PubMedCrossRefGoogle Scholar
  34. 34.
    Meehan, R. R., Lewis, J. D., & Bird, A. P. (1992). Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Research, 20(19), 5085–5092.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13(15), 1924–1935.CrossRefGoogle Scholar
  36. 36.
    Maier, S., & Olek, A. (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. Journal of Nutrition, 132(8 Suppl), 2440S–2443S.PubMedGoogle Scholar
  37. 37.
    Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293(5532), 1089–1093.PubMedCrossRefGoogle Scholar
  38. 38.
    Thompson, R. F., Fazzari, M. J., Niu, H., Barzilai, N., Simmons, R. A., & Greally, J. M. (2010). Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. Journal of Biological Chemistry, 285(20), 15111–15118.PubMedCrossRefGoogle Scholar
  39. 39.
    Einstein, F., Thompson, R. F., Bhagat, T. D., et al. (2010). Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One, 5(1), e8887.PubMedCrossRefGoogle Scholar
  40. 40.
    Kuroda, A., Rauch, T. A., Todorov, I., et al. (2009). Insulin gene expression is regulated by DNA methylation. PLoS One, 4(9), e6953.PubMedCrossRefGoogle Scholar
  41. 41.
    Stenvinkel, P., Karimi, M., Johansson, S., et al. (2007). Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? Journal of Internal Medicine, 261(5), 488–499.PubMedCrossRefGoogle Scholar
  42. 42.
    Brennan, E. P., Ehrich, M., O’Donovan, H., et al. (2010). DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics, 5(5), 396–401.PubMedCrossRefGoogle Scholar
  43. 43.
    Chan, Y., Fish, J. E., D’Abreo, C., et al. (2004). The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. Journal of Biological Chemistry, 279(33), 35087–35100.PubMedCrossRefGoogle Scholar
  44. 44.
    Bell, C. G., Teschendorff, A. E., Rakyan, V. K., Maxwell, A. P., Beck, S., & Savage, D. A. (2010). Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics, 3, 33.PubMedCrossRefGoogle Scholar
  45. 45.
    Kim, M., Long, T. I., Arakawa, K., Wang, R., Yu, M. C., & Laird, P. W. (2010). DNA methylation as a biomarker for cardiovascular disease risk. PLoS One, 5(3), e9692.PubMedCrossRefGoogle Scholar
  46. 46.
    Hiltunen, M. O., Turunen, M. P., Hakkinen, T. P., et al. (2002). DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vascular Medicine, 7(1), 5–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Hiltunen, M. O., & Yla-Herttuala, S. (2003). DNA methylation, smooth muscle cells, and atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(10), 1750–1753.PubMedCrossRefGoogle Scholar
  48. 48.
    Laukkanen, M. O., Mannermaa, S., Hiltunen, M. O., et al. (1999). Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(9), 2171–2178.PubMedCrossRefGoogle Scholar
  49. 49.
    Rakyan, V. K., Beyan, H., Down, T. A., et al. (2011). Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genetics, 7(9), e1002300.PubMedCrossRefGoogle Scholar
  50. 50.
    Luger, K. (2006). Dynamic nucleosomes. Chromosome Research, 14(1), 5–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Malik, H. S., & Henikoff, S. (2003). Phylogenomics of the nucleosome. Natural Structural Biology, 10(11), 882–891.CrossRefGoogle Scholar
  53. 53.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.PubMedCrossRefGoogle Scholar
  54. 54.
    An, W. (2007). Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcellular Biochemistry, 41, 351–369.PubMedCrossRefGoogle Scholar
  55. 55.
    Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120.PubMedCrossRefGoogle Scholar
  56. 56.
    Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762), 844–847.PubMedCrossRefGoogle Scholar
  57. 57.
    Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., & Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes & Development, 7(4), 592–604.CrossRefGoogle Scholar
  58. 58.
    Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature, 389(6649), 349–352.PubMedCrossRefGoogle Scholar
  59. 59.
    Eberharter, A., & Becker, P. B. (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Reports, 3(3), 224–229.PubMedCrossRefGoogle Scholar
  60. 60.
    Roh, T. Y., Cuddapah, S., & Zhao, K. (2005). Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes & Development, 19(5), 542–552.CrossRefGoogle Scholar
  61. 61.
    Roh, T. Y., Wei, G., Farrell, C. M., & Zhao, K. (2007). Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Research, 17(1), 74–81.PubMedCrossRefGoogle Scholar
  62. 62.
    de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemistry Journal, 370(Pt 3), 737–749.Google Scholar
  63. 63.
    Wade, P. A., & Wolffe, A. P. (1997). Histone acetyltransferases in control. Current Biology, 7(2), R82–R84.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen, S., Feng, B., George, B., Chakrabarti, R., Chen, M., & Chakrabarti, S. (2010). Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. American Journal of Physiology, Endocrinology and Metabolism, 298(1), E127–E137.CrossRefGoogle Scholar
  65. 65.
    Mosley, A. L., & Ozcan, S. (2003). Glucose regulates insulin gene transcription by hyperacetylation of histone h4. Journal of Biological Chemistry, 278(22), 19660–19666.PubMedCrossRefGoogle Scholar
  66. 66.
    Mosley, A. L., Corbett, J. A., & Ozcan, S. (2004). Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1. Molecular Endocrinology, 18(9), 2279–2290.PubMedCrossRefGoogle Scholar
  67. 67.
    Suganuma, T., & Workman, J. L. (2011). Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry, 80, 473–499.PubMedCrossRefGoogle Scholar
  68. 68.
    Cheung, P., & Lau, P. (2005). Epigenetic regulation by histone methylation and histone variants. Molecular Endocrinology, 19(3), 563–573.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development, 15(18), 2343–2360.CrossRefGoogle Scholar
  70. 70.
    Qian, C., & Zhou, M. M. (2006). SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cellular and Molecular Life Sciences, 63(23), 2755–2763.PubMedCrossRefGoogle Scholar
  71. 71.
    Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., & Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO Journal, 13(16), 3822–3831.PubMedGoogle Scholar
  72. 72.
    Stassen, M. J., Bailey, D., Nelson, S., Chinwalla, V., & Harte, P. J. (1995). The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mechanisms of Development, 52(2–3), 209–223.PubMedCrossRefGoogle Scholar
  73. 73.
    Jenuwein, T., Laible, G., Dorn, R., & Reuter, G. (1998). SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cellular and Molecular Life Sciences, 54(1), 80–93.PubMedCrossRefGoogle Scholar
  74. 74.
    Sims, R. J., 3rd, Nishioka, K., & Reinberg, D. (2003). Histone lysine methylation: a signature for chromatin function. Trends in Genetics, 19(11), 629–639.PubMedCrossRefGoogle Scholar
  75. 75.
    Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C., & Allis, C. D. (2002). Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genetics, 30(1), 73–76.PubMedCrossRefGoogle Scholar
  76. 76.
    Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.PubMedCrossRefGoogle Scholar
  77. 77.
    Syreeni, A., El-Osta, A., Forsblom, C., et al. (2011). Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes. Diabetes, 60(11), 3073–3080.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang, H., Cao, R., Xia, L., et al. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Molecular Cell, 8(6), 1207–1217.PubMedCrossRefGoogle Scholar
  79. 79.
    Nishioka, K., Chuikov, S., Sarma, K., et al. (2002). Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes & Development, 16(4), 479–489.CrossRefGoogle Scholar
  80. 80.
    Zegerman, P., Canas, B., Pappin, D., & Kouzarides, T. (2002). Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. Journal of Biological Chemistry, 277(14), 11621–11624.PubMedCrossRefGoogle Scholar
  81. 81.
    Deering, T. G., Ogihara, T., Trace, A. P., Maier, B., & Mirmira, R. G. (2009). Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes, 58(1), 185–193.PubMedCrossRefGoogle Scholar
  82. 82.
    Ogihara, T., Vanderford, N. L., Maier, B., Stein, R. W., & Mirmira, R. G. (2009). Expression and function of Set7/9 in pancreatic islets. Islets, 1(3), 269–272.PubMedCrossRefGoogle Scholar
  83. 83.
    Francis, J., Chakrabarti, S. K., Garmey, J. C., & Mirmira, R. G. (2005). Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. Journal of Biological Chemistry, 280(43), 36244–36253.PubMedCrossRefGoogle Scholar
  84. 84.
    Li, Y., Reddy, M. A., Miao, F., et al. (2008). Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. Journal of Biological Chemistry, 283(39), 26771–26781.PubMedCrossRefGoogle Scholar
  85. 85.
    Brasacchio, D., Okabe, J., Tikellis, C., et al. (2009). Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 58(5), 1229–1236.PubMedCrossRefGoogle Scholar
  86. 86.
    Okabe, J., Orlowski, C., Balcerczyk, A., et al. (2012). Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circulation Research, 110, 1067–1076.PubMedCrossRefGoogle Scholar
  87. 87.
    Ea, C. K., & Baltimore, D. (2009). Regulation of NF-kappaB activity through lysine monomethylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 18972–18977.PubMedCrossRefGoogle Scholar
  88. 88.
    Yang, X. D., Huang, B., Li, M., Lamb, A., Kelleher, N. L., & Chen, L. F. (2009). Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO Journal, 28(8), 1055–1066.PubMedCrossRefGoogle Scholar
  89. 89.
    Sun, G., Reddy, M. A., Yuan, H., Lanting, L., Kato, M., & Natarajan, R. (2010). Epigenetic histone methylation modulates fibrotic gene expression. Journal of the American Society of Nephrology, 21(12), 2069–2080.PubMedCrossRefGoogle Scholar
  90. 90.
    Verrecchia, F., Chu, M. L., & Mauviel, A. (2001). Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. Journal of Biological Chemistry, 276(20), 17058–17062.PubMedCrossRefGoogle Scholar
  91. 91.
    Chung, A. C., Zhang, H., Kong, Y. Z., et al. (2010). Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. Journal of the American Society of Nephrology, 21(2), 249–260.PubMedCrossRefGoogle Scholar
  92. 92.
    Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., & Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO Journal, 17(11), 3091–3100.PubMedCrossRefGoogle Scholar
  93. 93.
    Yang, F., Chung, A. C., Huang, X. R., & Lan, H. Y. (2009). Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension, 54(4), 877–884.PubMedCrossRefGoogle Scholar
  94. 94.
    Lan, H. Y. (2011). Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.PubMedCrossRefGoogle Scholar
  95. 95.
    Fujimoto, M., Maezawa, Y., Yokote, K., et al. (2003). Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochemical and Biophysical Research Communications, 305(4), 1002–1007.PubMedCrossRefGoogle Scholar
  96. 96.
    Li, J. H., Huang, X. R., Zhu, H. J., et al. (2004). Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. The FASEB Journal, 18(1), 176–178.CrossRefGoogle Scholar
  97. 97.
    Wang, W., Huang, X. R., Canlas, E., et al. (2006). Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circulation Research, 98(8), 1032–1039.PubMedCrossRefGoogle Scholar
  98. 98.
    Martens, J. H., Verlaan, M., Kalkhoven, E., & Zantema, A. (2003). Cascade of distinct histone modifications during collagenase gene activation. Molecular and Cellular Biology, 23(5), 1808–1816.PubMedCrossRefGoogle Scholar
  99. 99.
    Pradhan, S., Chin, H. G., Esteve, P. O., & Jacobsen, S. E. (2009). SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics, 4(6), 383–387.PubMedCrossRefGoogle Scholar
  100. 100.
    Dhayalan, A., Kudithipudi, S., Rathert, P., & Jeltsch, A. (2011). Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chemical Biology, 18(1), 111–120.CrossRefGoogle Scholar
  101. 101.
    Chuikov, S., Kurash, J. K., Wilson, J. R., et al. (2004). Regulation of p53 activity through lysine methylation. Nature, 432(7015), 353–360.PubMedCrossRefGoogle Scholar
  102. 102.
    Esteve, P. O., Chin, H. G., Benner, J., et al. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5076–5081.PubMedCrossRefGoogle Scholar
  103. 103.
    Subramanian, K., Jia, D., Kapoor-Vazirani, P., et al. (2008). Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Molecular Cell, 30(3), 336–347.PubMedCrossRefGoogle Scholar
  104. 104.
    Kouskouti, A., Scheer, E., Staub, A., Tora, L., & Talianidis, I. (2004). Gene-specific modulation of TAF10 function by SET9-mediated methylation. Molecular Cell, 14(2), 175–182.PubMedCrossRefGoogle Scholar
  105. 105.
    Yang, J., Huang, J., Dasgupta, M., et al. (2010). Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21499–21504.PubMedCrossRefGoogle Scholar
  106. 106.
    Saraheimo, M., Teppo, A. M., Forsblom, C., Fagerudd, J., & Groop, P. H. (2003). Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia, 46(10), 1402–1407.PubMedCrossRefGoogle Scholar
  107. 107.
    Shikano, M., Sobajima, H., Yoshikawa, H., et al. (2000). Usefulness of a highly sensitive urinary and serum IL-6 assay in patients with diabetic nephropathy. Nephron, 85(1), 81–85.PubMedCrossRefGoogle Scholar
  108. 108.
    Tuttle, H. A., Davis-Gorman, G., Goldman, S., Copeland, J. G., & McDonagh, P. F. (2004). Proinflammatory cytokines are increased in type 2 diabetic women with cardiovascular disease. Journal of Diabetes and its Complications, 18(6), 343–351.PubMedCrossRefGoogle Scholar
  109. 109.
    Mirza, S., Hossain, M., Mathews, C., et al. (2012). Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine, 57(1), 136–142.PubMedCrossRefGoogle Scholar
  110. 110.
    Berthier, C. C., Zhang, H., Schin, M., et al. (2009). Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes, 58(2), 469–477.PubMedCrossRefGoogle Scholar
  111. 111.
    Simon, A. R., Rai, U., Fanburg, B. L., & Cochran, B. H. (1998). Activation of the JAK-STAT pathway by reactive oxygen species. American Journal of Physiology, 275(6 Pt 1), C1640–C1652.PubMedGoogle Scholar
  112. 112.
    Huang, J. S., Guh, J. Y., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. Journal of Cellular Biochemistry, 81(1), 102–113.PubMedCrossRefGoogle Scholar
  113. 113.
    Lu, T. C., Wang, Z. H., Feng, X., et al. (2009). Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney International, 76(1), 63–71.PubMedCrossRefGoogle Scholar
  114. 114.
    Rawlings, J. S., Rosler, K. M., & Harrison, D. A. (2004). The JAK/STAT signaling pathway. Journal of Cell Science, 117(Pt 8), 1281–1283.PubMedCrossRefGoogle Scholar
  115. 115.
    Yasukawa, H., Ohishi, M., Mori, H., et al. (2003). IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunology, 4(6), 551–556.PubMedCrossRefGoogle Scholar
  116. 116.
    Ortiz-Munoz, G., Lopez-Parra, V., Lopez-Franco, O., et al. (2010). Suppressors of cytokine signaling abrogate diabetic nephropathy. Journal of the American Society of Nephrology, 21(5), 763–772.PubMedCrossRefGoogle Scholar
  117. 117.
    Gaughan, L., Stockley, J., Wang, N., et al. (2011). Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Research, 39(4), 1266–1279.PubMedCrossRefGoogle Scholar
  118. 118.
    O’Meara, N. M., Blackman, J. D., Ehrmann, D. A., et al. (1993). Defects in beta-cell function in functional ovarian hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 76(5), 1241–1247.PubMedCrossRefGoogle Scholar
  119. 119.
    Dunaif, A., & Finegood, D. T. (1996). beta-Cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism, 81(3), 942–947.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu, S., Navarro, G., & Mauvais-Jarvis, F. (2010). Androgen excess produces systemic oxidative stress and predisposes to beta-cell failure in female mice. PLoS One, 5(6), e11302.PubMedCrossRefGoogle Scholar
  121. 121.
    Pirola, L., Balcerczyk, A., Tothill, R. W., et al. (2011). Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Research, 21(10), 1601–1615.PubMedCrossRefGoogle Scholar
  122. 122.
    Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.PubMedCrossRefGoogle Scholar
  123. 123.
    Noyman, I., Marikovsky, M., Sasson, S., et al. (2002). Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. Nitric Oxide, 7(3), 187–193.PubMedCrossRefGoogle Scholar
  124. 124.
    Zhang, Q., Malik, P., Pandey, D., et al. (2008). Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9), 1627–1633.PubMedCrossRefGoogle Scholar
  125. 125.
    Du, X., Edelstein, D., Obici, S., Higham, N., Zou, M. H., & Brownlee, M. (2006). Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. The Journal of Clinical Investigation, 116(4), 1071–1080.PubMedCrossRefGoogle Scholar
  126. 126.
    Shen, X., Zheng, S., Metreveli, N. S., & Epstein, P. N. (2006). Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55(3), 798–805.PubMedCrossRefGoogle Scholar
  127. 127.
    Otero, P., Bonet, B., Herrera, E., & Rabano, A. (2005). Development of atherosclerosis in the diabetic BALB/c mice. Prevention with vitamin E administration. Atherosclerosis, 182(2), 259–265.PubMedCrossRefGoogle Scholar
  128. 128.
    Zhang, Y., Wada, J., Hashimoto, I., et al. (2006). Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. Journal of the American Society of Nephrology, 17(4), 1090–1101.PubMedCrossRefGoogle Scholar
  129. 129.
    DeRubertis, F. R., Craven, P. A., & Melhem, M. F. (2007). Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse: effects of tempol. Metabolism, 56(9), 1256–1264.PubMedCrossRefGoogle Scholar
  130. 130.
    Kowluru, R. A., Kowluru, V., Xiong, Y., & Ho, Y. S. (2006). Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radical Biology & Medicine, 41(8), 1191–1196.CrossRefGoogle Scholar
  131. 131.
    Vincent, A. M., Russell, J. W., Sullivan, K. A., et al. (2007). SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Experimental Neurology, 208(2), 216–227.PubMedCrossRefGoogle Scholar
  132. 132.
    Kurash, J. K., Lei, H., Shen, Q., et al. (2008). Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Molecular Cell, 29(3), 392–400.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes InstituteThe Alfred Medical Research and Education PrecinctMelbourneAustralia
  2. 2.Epigenomics Profiling Facility, Baker IDI Heart and Diabetes InstituteThe Alfred Medical Research and Education PrecinctMelbourneAustralia
  3. 3.Department of PathologyThe University of MelbourneMelbourneAustralia
  4. 4.Faculty of MedicineMonash UniversityMelbourneAustralia

Personalised recommendations