Derivation of Vascular Endothelial Cells from Human Embryonic Stem Cells Under GMP-Compliant Conditions: Towards Clinical Studies in Ischaemic Disease

  • A. Kaupisch
  • L. Kennedy
  • V. Stelmanis
  • B. Tye
  • N. M. Kane
  • J. C. Mountford
  • A. Courtney
  • A. H. BakerEmail author


Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin+/PECAM-1+ cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.


hESC GMP Roslin Cells Differentiation Vascular endothelial cells EC EPC 



Good manufacturing practice


Endothelial cells


Human embryonic stem cells


Endothelial progenitor cells


Neuronal cell adhesion molecule


Kinase insert domain receptor


Peripheral arterial disease


Critical limb ischaemia


Bone marrow


Embryoid bodies


Mouse embryonic fibroblasts


Advanced therapy medicinal products


Basic fibroblast growth factor


Vascular endothelial growth factor



We would like to thank the Technological Strategy Board and the British Heart Foundation for supporting this work. AHB is supported by the British Heart Foundation Chair of Translational Cardiovascular Sciences.

Ethical Standards

These studies were performed with project approval from the UK Stem Cell Bank Steering Committee and in accordance with current guidelines for the use of human embryonic stem cells.


  1. 1.
    Gupta, R., & Losordo, D. W. (2011). Cell therapy for critical limb ischemia: Moving forward one step at a time. Circulation Cardiovascular Interventions, 4(1), 2–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedCrossRefGoogle Scholar
  3. 3.
    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., Martin, T., Rouleau, A., & Bhatia, M. (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1), 31–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4391–4396.PubMedCrossRefGoogle Scholar
  6. 6.
    Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., & Lanza, R. (2007). Generation of functional hemangioblasts from human embryonic stem cells. Nature Methods, 4(6), 501–509.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, S. S., Fitzgerald, W., Zimmerberg, J., Kleinman, H. K., & Margolis, L. (2007). Cell–cell and cell–extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells, 25(3), 553–561.PubMedCrossRefGoogle Scholar
  8. 8.
    Li, Z., Suzuki, Y., Huang, M., Cao, F., Xie, X., Connolly, A. J., Yang, P. C., & Wu, J. C. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells, 26(4), 864–873.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., & Thomson, J. A. (2001). Hematopoietic colony-forming cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10716–10721.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, Z. Z., Au, P., Chen, T., Shao, Y., Daheron, L. M., Bai, H., Arzigian, M., Fukumura, D., Jain, R. K., & Scadden, D. T. (2007). Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnology, 25(3), 317–318.PubMedCrossRefGoogle Scholar
  11. 11.
    Vodyanik, M. A., Bork, J. A., Thomson, J. A., & Slukvin, I. I. (2005). Human embryonic stem cell-derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105(2), 617–626.PubMedCrossRefGoogle Scholar
  12. 12.
    Lagarkova, M. A., Volchkov, P. Y., Philonenko, E. S., & Kiselev, S. L. (2008). Efficient differentiation of hESCs into endothelial cells in vitro is secured by epigenetic changes. Cell Cycle, 7(18), 2929–2935.PubMedCrossRefGoogle Scholar
  13. 13.
    Prado-Lopez, S., Conesa, A., Arminan, A., Martinez-Losa, M., Escobedo-Lucea, C., Gandia, C., Tarazona, S., Melguizo, D., Blesa, D., Montaner, D., Sanz-Gonzalez, S., Sepulveda, P., Gotz, S., O’Connor, J. E., Moreno, R., Dopazo, J., Burks, D. J., & Stojkovic, M. (2010). Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells, 28(3), 407–418.PubMedGoogle Scholar
  14. 14.
    Nourse, M. B., Halpin, D. E., Scatena, M., Mortisen, D. J., Tulloch, N. L., Hauch, K. D., Torok-Storb, B., Ratner, B. D., Pabon, L., & Murry, C. E. (2009). VEGF induces differentiation of functional endothelium from human embryonic stem cells: Implications for tissue engineering. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(1), 80–89.PubMedCrossRefGoogle Scholar
  15. 15.
    James, D., Nam, H. S., Seandel, M., Nolan, D., Janovitz, T., Tomishima, M., Studer, L., Lee, G., Lyden, D., Benezra, R., Zaninovic, N., Rosenwaks, Z., Rabbany, S. Y., & Rafii, S. (2010). Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nature Biotechnology, 28(2), 161–166.PubMedCrossRefGoogle Scholar
  16. 16.
    Cuende, N., & Izeta, A. (2010). Clinical translation of stem cell therapies: A bridgeable gap. Cell Stem Cell, 6(6), 508–512.PubMedCrossRefGoogle Scholar
  17. 17.
    Hyun, I., Lindvall, O., Ahrlund-Richter, L., Cattaneo, E., Cavazzana-Calvo, M., Cossu, G., De Luca, M., Fox, I. J., Gerstle, C., Goldstein, R. A., Hermeren, G., High, K. A., Kim, H. O., Lee, H. P., Levy-Lahad, E., Li, L., Lo, B., Marshak, D. R., McNab, A., Munsie, M., Nakauchi, H., Rao, M., Rooke, H. M., Valles, C. S., Srivastava, A., Sugarman, J., Taylor, P. L., Veiga, A., Wong, A. L., Zoloth, L., & Daley, G. Q. (2008). New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell, 3(6), 607–609.PubMedCrossRefGoogle Scholar
  18. 18.
    Kane, N. M., Meloni, M., Spencer, H. L., Craig, M. A., Strehl, R., Milligan, G., Houslay, M. D., Mountford, J. C., Emanueli, C., & Baker, A. H. (2010). Derivation of endothelial cells from human embryonic stem cells by directed differentiation: Analysis of microRNA and angiogenesis in vitro and in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(7), 1389–1397.PubMedCrossRefGoogle Scholar
  19. 19.
    Kane, N. M., Howard, L., Descamps, B., Meloni, M., McClure, J., Lu, R., McCahill, A., Breen, C., Mackenzie, R. M., Delles, C., Mountford, J. C., Milligan, G., Emanueli, C., & Baker, A. H. (2012). Role of MicroRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells, 30(4), 643–654.PubMedCrossRefGoogle Scholar
  20. 20.
    Huang, N. F., Niiyama, H., Peter, C., De, A., Natkunam, Y., Fleissner, F., Li, Z., Rollins, M. D., Wu, J. C., Gambhir, S. S., & Cooke, J. P. (2010). Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arterioscler Thromb Vasc Biol, 30(5), 984–991.PubMedCrossRefGoogle Scholar
  21. 21.
    Dar, A., Domev, H., Ben-Yosef, O., Tzukerman, M., Zeevi-Levin, N., Novak, A., Germanguz, I., Amit, M., & Itskovitz-Eldor, J. (2012). Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation, 125(1), 87–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Cho, S. W., Moon, S. H., Lee, S. H., Kang, S. W., Kim, J., Lim, J. M., Kim, H. S., Kim, B. S., & Chung, H. M. (2007). Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation, 116(21), 2409–2419.PubMedCrossRefGoogle Scholar
  23. 23.
    Sone, M., Itoh, H., Yamahara, K., Yamashita, J. K., Yurugi-Kobayashi, T., Nonoguchi, A., Suzuki, Y., Chao, T. H., Sawada, N., Fukunaga, Y., Miyashita, K., Park, K., Oyamada, N., Sawada, N., Taura, D., Tamura, N., Kondo, Y., Nito, S., Suemori, H., Nakatsuji, N., Nishikawa, S., & Nakao, K. (2007). Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(10), 2127–2134.PubMedCrossRefGoogle Scholar
  24. 24.
    Evseenko, D., Zhu, Y., Schenke-Layland, K., Kuo, J., Latour, B., Ge, S., Scholes, J., Dravid, G., Li, X., MacLellan, W. R., & Crooks, G. M. (2010). Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13742–13747.PubMedCrossRefGoogle Scholar
  25. 25.
    Stratman, A. N., Davis, M. J., & Davis, G. E. (2011). VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood, 117(14), 3709–3719.PubMedCrossRefGoogle Scholar
  26. 26.
    Asahara, T., & Kawamoto, A. (2004). Endothelial progenitor cells for postnatal vasculogenesis. American Journal of Physiology Cell Physiology, 287(3), C572–C579.PubMedCrossRefGoogle Scholar
  27. 27.
    Jones, E. A., Kinsey, S. E., English, A., Jones, R. A., Straszynski, L., Meredith, D. M., Markham, A. F., Jack, A., Emery, P., & McGonagle, D. (2002). Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis and Rheumatism, 46(12), 3349–3360.PubMedCrossRefGoogle Scholar
  28. 28.
    Bi, Y., Stuelten, C. H., Kilts, T., Wadhwa, S., Iozzo, R. V., Robey, P. G., Chen, X. D., & Young, M. F. (2005). Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. Journal of Biological Chemistry, 280(34), 30481–30489.PubMedCrossRefGoogle Scholar
  29. 29.
    Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., Cowan, C. A., Chien, K. R., & Melton, D. A. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26(3), 313–315.PubMedCrossRefGoogle Scholar
  30. 30.
    Albelda, S. M., Muller, W. A., Buck, C. A., & Newman, P. J. (1991). Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell–cell adhesion molecule. The Journal of Cell Biology, 114(5), 1059–1068.PubMedCrossRefGoogle Scholar
  31. 31.
    Bach, T. L., Barsigian, C., Chalupowicz, D. G., Busler, D., Yaen, C. H., Grant, D. S., & Martinez, J. (1998). VE-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Experimental Cell Research, 238(2), 324–334.PubMedCrossRefGoogle Scholar
  32. 32.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., & Isner, J. M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.PubMedCrossRefGoogle Scholar
  33. 33.
    Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., Oz, M. C., Hicklin, D. J., Witte, L., Moore, M. A., & Rafii, S. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.PubMedGoogle Scholar
  34. 34.
    Estes, M. L., Mund, J. A., Mead, L. E., Prater, D. N., Cai, S., Wang, H., Pollok, K. E., Murphy, M. P., An, C. S., Srour, E. F., Ingram, D. A., Jr., & Case, J. (2010). Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry Part A, 77(9), 831–839.CrossRefGoogle Scholar
  35. 35.
    Masouleh, B. K., Baraniskin, A., Schmiegel, W., & Schroers, R. (2010). Quantification of circulating endothelial progenitor cells in human peripheral blood: Establishing a reliable flow cytometry protocol. Journal of Immunological Methods, 357(1–2), 38–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt-Lucke, C., Fichtlscherer, S., Aicher, A., Tschope, C., Schultheiss, H. P., Zeiher, A. M., & Dimmeler, S. (2010). Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One, 5(11), e13790.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee, M. J., Kim, J., Lee, K. I., Shin, J. M., Chae, J. I., & Chung, H. M. (2011). Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy, 13(2), 165–178.PubMedCrossRefGoogle Scholar
  38. 38.
    Moon, S. H., Kim, J. S., Park, S. J., Lee, H. J., Do, J. T., & Chung, H. M. (2011). A system for treating ischemic disease using human embryonic stem cell-derived endothelial cells without direct incorporation. Biomaterials, 32(27), 6445–6455.PubMedCrossRefGoogle Scholar
  39. 39.
    Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., & March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109(10), 1292–1298.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Kaupisch
    • 1
  • L. Kennedy
    • 2
  • V. Stelmanis
    • 2
  • B. Tye
    • 2
  • N. M. Kane
    • 1
  • J. C. Mountford
    • 1
  • A. Courtney
    • 2
  • A. H. Baker
    • 1
    Email author
  1. 1.BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
  2. 2.Roslin Cells Ltd., Scottish Centre for Regenerative MedicineEdinburghUK

Personalised recommendations