The Vascular Stem Cell Niche

  • Maria Victoria Gómez-Gaviro
  • Robin Lovell-Badge
  • Francisco Fernández-Avilés
  • Enrique Lara-Pezzi
Article

Abstract

Stem cells in adult organs reside in specialized niches that regulate their proliferation and differentiation. Investigations during the last few years have unveiled a regulatory role for blood vessels in these microenvironments. Mesenchymal stem cells (MSCs) are located surrounding capillaries in a variety of tissues and have the capacity to differentiate into different mesodermal lineages. Angiogenic progenitor cells have also been found in the adventitial layer of large vessels. In the bone marrow, endothelial cells control hematopoietic stem cell (HSC) release, and in the brain, blood vessels regulate neural stem cell (NSC) self-renewal and neurogenesis. Similarly, perivascular progenitor cells have also been found in the heart. This intimate connection between stem cells and the vasculature contributes to tissue homeostasis and repair. In this review, we focus on the regulation of stem and progenitor cells in different adult niches by blood vessels and the few mechanisms that are known to mediate this interaction.

Keywords

Stem cell niche Perivascular Pericyte Cytokine Growth factor 

Notes

References

  1. 1.
    Yin, T., & Li, L. (2006). The stem cell niches in bone. The Journal of Clinical Investigation, 116, 1195–1201.PubMedGoogle Scholar
  2. 2.
    Yoshida, S., Sukeno, M., & Nabeshima, Y. (2007). A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science, 317, 1722–1726.PubMedGoogle Scholar
  3. 3.
    Christov, C., Chrétien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., et al. (2007). Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Molecular and Cellular Biology, 18, 1397–1409.Google Scholar
  4. 4.
    Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322, 583–586.PubMedGoogle Scholar
  5. 5.
    Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Reviews. Cancer, 7, 733–736.PubMedGoogle Scholar
  6. 6.
    Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.PubMedGoogle Scholar
  7. 7.
    Zymek, P., Bujak, M., Chatila, K., Cieslak, A., Thakker, G., Entman, M. L., et al. (2006). The role of platelet-derived growth factor signaling in healing myocardial infarcts. Journal of the American College of Cardiology, 48, 2315–2323.PubMedGoogle Scholar
  8. 8.
    Kim, J., Wu, Q., Zhang, Y., Wiens, K. M., Huang, Y., Rubin, N., et al. (2010). PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proceedings of the National Academy of Sciences of the United States of America, 107, 17206–17210.PubMedGoogle Scholar
  9. 9.
    Crisan, M., Yap, S., Casteilla, L., Chen, C.-W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.PubMedGoogle Scholar
  10. 10.
    Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255–267.PubMedGoogle Scholar
  11. 11.
    Corselli, M., Chen, C.-W., Crisan, M., Lazzari, L., & Péault, B. (2010). Perivascular ancestors of adult multipotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1104–1109.PubMedGoogle Scholar
  12. 12.
    Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 12, 126–131.PubMedGoogle Scholar
  13. 13.
    Friedenstein, A., Chailakhjan, R., & Lalykina, K. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3, 393–403.PubMedGoogle Scholar
  14. 14.
    Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.PubMedGoogle Scholar
  15. 15.
    Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829–834.PubMedGoogle Scholar
  16. 16.
    Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1210–1221.PubMedGoogle Scholar
  17. 17.
    Fernández-Avilés, F., JaS, R., García-Frade, J., Fernández, M. E., Peñarrubia, M. J., Fuente, L. D. L., et al. (2004). Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circulation Research, 95, 742–748.PubMedGoogle Scholar
  18. 18.
    Williams, A. R., Trachtenberg, B., Velazquez, D. L., Mcniece, I., Altman, P., Rouy, D., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108, 792–796.PubMedGoogle Scholar
  19. 19.
    Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.PubMedGoogle Scholar
  20. 20.
    Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940.PubMedGoogle Scholar
  21. 21.
    Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.PubMedGoogle Scholar
  22. 22.
    Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027.PubMedGoogle Scholar
  23. 23.
    Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8, 726–736.PubMedGoogle Scholar
  24. 24.
    Majesky, M. W., Dong, X. R., Hoglund, V., Mahoney, W. M., & Daum, G. (2011). The adventitia: a dynamic interface containing resident progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1530–1539.PubMedGoogle Scholar
  25. 25.
    Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105, 2783–2786.PubMedGoogle Scholar
  26. 26.
    Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133, 1543–1551.PubMedGoogle Scholar
  27. 27.
    Pasquinelli, G., Tazzari, P. L., Vaselli, C., Foroni, L., Buzzi, M., Storci, G., et al. (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25, 1627–1634.PubMedGoogle Scholar
  28. 28.
    Klein, D., Weißhardt, P., Kleff, V., Jastrow, H., Jakob, H. G., & Ergün, S. (2011). Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One, 6, e20540.PubMedGoogle Scholar
  29. 29.
    Corselli, M., Chen, C. W., Sun, B., Yap, S., Rubin, J. P., Péault, B. (2011). The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Development Epub ahead of print.Google Scholar
  30. 30.
    Invernici, G., Emanueli, C., Madeddu, P., Cristini, S., Gadau, S., Benetti, A., et al. (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. The American Journal of Pathology, 170, 1879–1892.PubMedGoogle Scholar
  31. 31.
    Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A. P., Kränkel, N., Katare, R., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121, 1735–1745.PubMedGoogle Scholar
  32. 32.
    Katare, R., Riu, F., Mitchell, K., Gubernator, M., Campagnolo, P., Cui, Y., et al. (2011). Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation Research, 109, 894–906.PubMedGoogle Scholar
  33. 33.
    Passman, J. N., Dong, X. R., Wu, S.-P., Maguire, C. T., Hogan, K. A., Bautch, V. L., et al. (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 9349–9354.PubMedGoogle Scholar
  34. 34.
    Hu, Y., Zhang, Z., Torsney, E., Afzal, A. R., Davison, F., Metzler, B., et al. (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. The Journal of Clinical Investigation, 113, 1258–1265.PubMedGoogle Scholar
  35. 35.
    Psaltis, P. J., Harbuzariu, A., Delacroix, S., Witt, T. A., Holroyd, E. W., Spoon, D. B., et al. (2012). Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta/clinical perspective. Circulation, 125, 592–603.PubMedGoogle Scholar
  36. 36.
    Coskun, S., & Hirschi, K. K. (2010). Establishment and regulation of the HSC niche: roles of osteoblastic and vascular compartments. Birth Defects Research. Part C, Embryo Today, 90, 229–242.Google Scholar
  37. 37.
    Bautch, V. L. (2011). Stem cells and the vasculature. Nature Medicine, 17, 1437–1443.PubMedGoogle Scholar
  38. 38.
    Kissa, K., & Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 464, 112–115.PubMedGoogle Scholar
  39. 39.
    Bertrand, J. Y., Chi, N. C., Santoso, B., Teng, S., Stainier, D. Y. R., & Traver, D. (2010). Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 464, 108–111.PubMedGoogle Scholar
  40. 40.
    Boisset, J.-C., Van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., & Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, 464, 116–120.PubMedGoogle Scholar
  41. 41.
    Kiel, M. J., Yilmaz, Ö. H., Iwashita, T., Yilmaz, O. H., Tehorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish resource hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.PubMedGoogle Scholar
  42. 42.
    Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., et al. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118, 149–161.PubMedGoogle Scholar
  43. 43.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.PubMedGoogle Scholar
  44. 44.
    Kiel, M. J., & Morrison, S. J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews. Immunology, 8, 290–301.PubMedGoogle Scholar
  45. 45.
    Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., et al. (2008). The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell, 2, 252–263.PubMedGoogle Scholar
  46. 46.
    Chute, J. P., Saini, A. A., Chute, D. J., Wells, M. R., Clark, W. B., Harlan, D. M., et al. (2002). Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood, 100, 4433–4439.PubMedGoogle Scholar
  47. 47.
    Li, W., Johnson, S. A., Shelley, W. C., & Yoder, M. C. (2004). Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Experimental Hematology, 32, 1226–1237.PubMedGoogle Scholar
  48. 48.
    Butler, J. M., Nolan, D. J., Vertes, E. L., Varnum-Finney, B., Kobayashi, H., Hooper, A. T., et al. (2010). Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell, 6, 251–264.PubMedGoogle Scholar
  49. 49.
    Duncan, A. W., Rattis, F. M., Dimascio, L. N., Congdon, K. L., Pazianos, G., Zhao, C., et al. (2005). Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunology, 6, 314–322.PubMedGoogle Scholar
  50. 50.
    Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423, 409–414.PubMedGoogle Scholar
  51. 51.
    Varnum-Finney, B., Halasz, L. M., Sun, M., Gridley, T., Radtke, F., & Bernstein, I. D. (2011). Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. The Journal of Clinical Investigation, 121, 1207–1216.PubMedGoogle Scholar
  52. 52.
    Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.PubMedGoogle Scholar
  53. 53.
    Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–841.PubMedGoogle Scholar
  54. 54.
    Kiel, M. J., Acar, M., Radice, G. L., & Morrison, S. J. (2009). Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell, 4, 170–179.PubMedGoogle Scholar
  55. 55.
    Kobayashi, H., Butler, J. M., O'donnell, R., Kobayashi, M., Ding, B.-S., Bonner, B., et al. (2010). Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 12, 1046–1056.PubMedGoogle Scholar
  56. 56.
    Oikawa, A., Siragusa, M., Quaini, F., Mangialardi, G., Katare, R. G., Caporali, A., et al. (2010). Diabetes mellitus induces bone marrow microangiopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 498–508.PubMedGoogle Scholar
  57. 57.
    Sacchetti, B., Funari, A., Michienzi, S., Cesare, S. D., Piersanti, S., Saggio, I., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.PubMedGoogle Scholar
  58. 58.
    Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.PubMedGoogle Scholar
  59. 59.
    Sipkins, D. A., Wei, X., Wu, J. W., Runnels, J. M., Cote, D., Means, T. K., et al. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–973.PubMedGoogle Scholar
  60. 60.
    Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. The Journal of Clinical Investigation, 106, 1331–1339.PubMedGoogle Scholar
  61. 61.
    Ferraro, F., Lymperi, S., Méndez-Ferrer, S., Saez, B., Spencer, J. A., Yeap, B. Y., et al. (2011). Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Science Translational Medicine, 3, 104ra101.PubMedGoogle Scholar
  62. 62.
    Schajnovitz, A., Itkin, T., D'uva, G., Kalinkovich, A., Golan, K., Ludin, A., et al. (2011). CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 12, 391–398.PubMedGoogle Scholar
  63. 63.
    Avecilla, S. T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., et al. (2004). Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Medicine, 10, 64–71.PubMedGoogle Scholar
  64. 64.
    Chow, A., Lucas, D., Hidalgo, A., Méndez-Ferrer, S., Hashimoto, D., Scheiermann, C., et al. (2011). Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. The Journal of Experimental Medicine, 208, 261–271.PubMedGoogle Scholar
  65. 65.
    Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R., & Link, D. C. (2011). Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. The Journal of Experimental Medicine, 208, 251–260.PubMedGoogle Scholar
  66. 66.
    Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481, 457–462.PubMedGoogle Scholar
  67. 67.
    Doe, C. Q. (2008). Neural stem cells: balancing self-renewal with differentiation. Development, 135, 1575–1587.PubMedGoogle Scholar
  68. 68.
    Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13, 534–550.Google Scholar
  69. 69.
    Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311, 1880–1885.PubMedGoogle Scholar
  70. 70.
    Goldman, S. A., & Chen, Z. (2011). Perivascular instruction of cell genesis and fate in the adult brain. Nature Neuroscience, 14, 1382–1389.PubMedGoogle Scholar
  71. 71.
    Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. The Journal of Comparative Neurology, 425, 479–494.PubMedGoogle Scholar
  72. 72.
    Tavazoie, M., Veken, L. V. D., Silva-Vargas, V., Louissaint, M., Colonna, L., Zaidi, B., et al. (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3, 279–288.PubMedGoogle Scholar
  73. 73.
    Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S. M., Goderie, S. K., et al. (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell, 3, 289–300.PubMedGoogle Scholar
  74. 74.
    Kokovay, E., Goderie, S., Wang, Y., Lotz, S., Lin, G., Sun, Y., et al. (2010). Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell, 7, 163–173.PubMedGoogle Scholar
  75. 75.
    Shen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., et al. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338–1340.PubMedGoogle Scholar
  76. 76.
    Ramírez-Castillejo, C., Sánchez-Sánchez, F., Andreu-Agulló, C., Ferrón, S. R., Aroca-Aguilar, J. D., Sánchez, P., et al. (2006). Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nature Neuroscience, 9, 331–339.PubMedGoogle Scholar
  77. 77.
    Andreu-Agullo, C., Morante-Redolat, J. M., Delgado, A. C., & Farinas, I. (2009). Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nature Neuroscience, 12, 1514–1523.PubMedGoogle Scholar
  78. 78.
    Eyler Christine, E., Wu, Q., Yan, K., Macswords Jennifer, M., Chandler-Militello, D., Misuraca Katherine, L., et al. (2011). Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell, 146, 53–66.PubMedGoogle Scholar
  79. 79.
    Dunbar, A. J., & Goddard, C. (2000). Structure–function and biological role of betacellulin. The International Journal of Biochemistry & Cell Biology, 32, 805–815.Google Scholar
  80. 80.
    Gómez-Gaviro, M. V., Scott, C. E., Sesay, A. K., Matheu, A., Booth, S., Galichet, C., et al. (2012). Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 109, 1317–1322.PubMedGoogle Scholar
  81. 81.
    Leventhal, C., Rafii, S., Rafii, D., Shahar, A., & Goldman, S. A. (1999). Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Molecular and Cellular Neurosciences, 13, 450–464.PubMedGoogle Scholar
  82. 82.
    Louissaint, A., Jr., Rao, S., Leventhal, C., & Goldman, S. A. (2002). Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 34, 945–960.PubMedGoogle Scholar
  83. 83.
    Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.PubMedGoogle Scholar
  84. 84.
    Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research, 109, 941–961.PubMedGoogle Scholar
  85. 85.
    Chong James, J. H., Chandrakanthan, V., Xaymardan, M., Asli Naisana, S., Li, J., Ahmed, I., et al. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.PubMedGoogle Scholar
  86. 86.
    Galvez, B. G., Sampaolesi, M., Barbuti, A., Crespi, A., Covarello, D., Brunelli, S., et al. (2008). Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 15, 1417–1428.PubMedGoogle Scholar
  87. 87.
    Bearzi, C., Leri, A., Lo Monaco, F., Rota, M., Gonzalez, A., Hosoda, T., et al. (2009). Identification of a coronary vascular progenitor cell in the human heart. Proceedings of the National Academy of Sciences of the United States of America, 106, 15885–15890.PubMedGoogle Scholar
  88. 88.
    Dellavalle, A., Maroli, G., Covarello, D., Azzoni, E., Innocenzi, A., Perani, L., et al. (2011). Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature Communications, 2, 499.PubMedGoogle Scholar
  89. 89.
    Dar, A., Domev, H., Ben-Yosef, O., Tzukerman, M., Zeevi-Levin, N., Novak, A., et al. (2012). Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb/clinical perspective. Circulation, 125, 87–99.PubMedGoogle Scholar
  90. 90.
    Sampaolesi, M., Torrente, Y., Innocenzi, A., Tonlorenzi, R., D'antona, G., Pellegrino, M. A., et al. (2003). Cell therapy of a-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science, 301, 487–492.PubMedGoogle Scholar
  91. 91.
    De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Gabriella, M., et al. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. The Journal of Cell Biology, 147, 869–878.PubMedGoogle Scholar
  92. 92.
    Sampaolesi, M., Blot, S., D'antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., et al. (2006). Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 444, 574–579.PubMedGoogle Scholar
  93. 93.
    Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., et al. (2002). Identification of a novel population of muscle stem cells in mice. The Journal of Cell Biology, 157, 851–864.PubMedGoogle Scholar
  94. 94.
    Okada, M., Payne, T. R., Zheng, B., Oshima, H., Momoi, N., Tobita, K., et al. (2008). Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. Journal of the American College of Cardiology, 52, 1869–1880.PubMedGoogle Scholar
  95. 95.
    Valina, C., Pinkernell, K., Song, Y.-H., Bai, X., Sadat, S., Campeau, R. J., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.PubMedGoogle Scholar
  96. 96.
    Houtgraaf, J. H., Den Dekker, W. K., Van Dalen, B. M., Springeling, T., De Jong, R., Van Geuns, R. J., et al. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59, 539–540.PubMedGoogle Scholar
  97. 97.
    Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135, 240–249.PubMedGoogle Scholar
  98. 98.
    Festa, E., Fretz, J., Berry, R., Schmidt, B., Rodeheffer, M., Horowitz, M., et al. (2011). Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell, 146, 761–771.PubMedGoogle Scholar
  99. 99.
    Majka, S. M., Fox, K. E., Psilas, J. C., Helm, K. M., Childs, C. R., Acosta, A. S., et al. (2010). De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America, 107, 14781–14786.PubMedGoogle Scholar
  100. 100.
    Zeve, D., Tang, W., & Graff, J. (2009). Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell, 5, 472–481.PubMedGoogle Scholar
  101. 101.
    Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R., & Arap, W. (2004). Reversal of obesity by targeted ablation of adipose tissue. Nature Medicine, 10, 625–632.PubMedGoogle Scholar
  102. 102.
    Cao, Y. (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nature Reviews. Drug Discovery, 9, 107–115.PubMedGoogle Scholar
  103. 103.
    Traktuev, D. O., Prater, D. N., Merfeld-Clauss, S., Sanjeevaiah, A. R., Saadatzadeh, M. R., Murphy, M., et al. (2009). Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation Research, 104, 1410–1420.PubMedGoogle Scholar
  104. 104.
    Davidoff, M. S., Middendorff, R., Enikolopov, G., Riethmacher, D., Holstein, A. F., & Müller, D. (2004). Progenitor cells of the testosterone-producing Leydig cells revealed. The Journal of Cell Biology, 167, 935–944.PubMedGoogle Scholar
  105. 105.
    Oatley, J. M., Oatley, M. J., Avarbock, M. R., Tobias, J. W., & Brinster, R. L. (2009). Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development, 136, 1191–1199.PubMedGoogle Scholar
  106. 106.
    Peerani, R., & Zandstra, P. W. (2010). Enabling stem cell therapies through synthetic stem cell–niche engineering. The Journal of Clinical Investigation, 120, 60–70.PubMedGoogle Scholar
  107. 107.
    Nakano-Doi, A., Nakagomi, T., Fujikawa, M., Nakagomi, N., Kubo, S., Lu, S., et al. (2010). Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells, 28, 1292–1302.PubMedGoogle Scholar
  108. 108.
    Nakagomi, N., Nakagomi, T., Kubo, S., Nakano-Doi, A., Saino, O., Takata, M., et al. (2009). Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells, 27, 2185–2195.PubMedGoogle Scholar
  109. 109.
    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.PubMedGoogle Scholar
  110. 110.
    Suda, T., Takubo, K., & Semenza, G. L. (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9, 298–310.PubMedGoogle Scholar
  111. 111.
    Vunjak-Novakovic, G., & Scadden, D. T. (2011). Biomimetic platforms for human stem cell research. Cell Stem Cell, 8, 252–261.PubMedGoogle Scholar
  112. 112.
    Gobaa, S., Hoehnel, S., Roccio, M., Negro, A., Kobel, S., & Lutolf, M. P. (2011). Artificial niche microarrays for probing single stem cell fate in high throughput. Nature Methods, 8, 949–955.PubMedGoogle Scholar
  113. 113.
    Calderón, L., & Boehm, T. (2012). Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell, 149, 159–172.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maria Victoria Gómez-Gaviro
    • 1
    • 2
  • Robin Lovell-Badge
    • 3
  • Francisco Fernández-Avilés
    • 1
    • 2
  • Enrique Lara-Pezzi
    • 4
  1. 1.Servicio de CardiologíaHospital General Universitario Gregorio MarañónMadridSpain
  2. 2.Instituto de Investigación Sanitaria Hospital Gregorio MarañónHospital General Universitario Gregorio MarañónMadridSpain
  3. 3.Division of Stem Cell Biology and Developmental GeneticsNational Institute for Medical Research, MRCLondonUK
  4. 4.Cardiovascular Development and Repair Dept.Centro Nacional de Investigaciones CardiovascularesMadridSpain

Personalised recommendations