Haptoglobin Genotype and Its Role in Diabetic Cardiovascular Disease

Article

Abstract

Over the past decade, several longitudinal epidemiological studies have brought attention to the haptoglobin genotype and its importance in determining diabetic vascular disease risk. This manuscript presents an overview of the biology of the haptoglobin genotype and reviews the literature concerning its role in the development of cardiovascular disease among individuals with diabetes mellitus.

Keywords

Haptoglobin genotype Cardiovascular disease Diabetes 

References

  1. 1.
    Preis, S. R., Hwang, S. J., Coady, S., Pencina, M. J., D'Agostino, R. B., Sr., Savage, P. J., Levy, D., & Fox, C. S. (2009). Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation, 119, 1728–1735.PubMedCrossRefGoogle Scholar
  2. 2.
    Franco, O. H., Steyerberg, E. W., Hu, F. B., Mackenbach, J., & Nusselder, W. (2007). Associations of diabetes mellitus with total life expectancy and life expectancy with and without cardiovascular disease. Archives of Internal Medicine, 167, 1145–1151.PubMedCrossRefGoogle Scholar
  3. 3.
    Gu, K., Cowie, C. C., & Harris, M. I. (1998). Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diabetes Care, 21, 1138–1145.PubMedCrossRefGoogle Scholar
  4. 4.
    Centers for Disease Control and Prevention. (2011). National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention.Google Scholar
  5. 5.
    Centers for Disease Control and Prevention (CDC), National Center for Health Statistics, Division of Health Interview Statistics, data from the National Health Interview Survey. Data computed by personnel in the CDC's Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion.Google Scholar
  6. 6.
    Gregg, E. W., Gu, Q., Cheng, Y. J., Narayan, K. M., & Cowie, C. C. (2007). Mortality trends in men and women with diabetes, 1971 to 2000. Annals of Internal Medicine, 147, 149–155.PubMedGoogle Scholar
  7. 7.
    Pambianco, G., Costacou, T., Ellis, D., Becker, D. J., Klein, R., & Orchard, T. J. (2006). The 30-year natural history of type 1 diabetes complications. The Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes, 55, 1463–1469.PubMedCrossRefGoogle Scholar
  8. 8.
    Imperatore, G., Cadwell, B. L., Geiss, L., Saadinne, J. B., Williams, D. E., Ford, E. S., Thompson, T. J., Narayan, K. M., & Gregg, E. W. (2004). Thirty-year trends in cardiovascular risk factor levels among US adults with diabetes: National Health and Nutrition Examination surveys, 1971–2000. American Journal of Epidemiology, 160, 531–539.PubMedCrossRefGoogle Scholar
  9. 9.
    Krolewski, A. S., Warram, J. H., Christlieb, A. R., Busick, E. J., & Kahn, C. R. (1985). The changing natural history of nephropathy in type I diabetes. American Journal of Medicine, 78, 785–794.PubMedCrossRefGoogle Scholar
  10. 10.
    Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein, H. C., Miller, M. E., Byington, R. P., Goff, D. C., Jr., Bigger, J. T., Buse, J. B., Cushman, W. C., Genuth, S., Ismail-Beigi, F., Grimm, R. H., Jr., Probstfield, J. L., Simons-Morton, D. G., & Friedewald, W. T. (2008). Effects of intensive glucose lowering in type 2 diabetes. The New England Journal of Medicine, 358, 2545–2559.PubMedCrossRefGoogle Scholar
  11. 11.
    ADVANCE Collaborative Group, Patel, A., MacMahon, S., Chalmers, J., Neal, B., Billot, L., Woodward, M., Marre, M., Cooper, M., Glasziou, P., Grobbee, D., Hamet, P., Harrap, S., Heller, S., Liu, L., Mancia, G., Mogensen, C. E., Pan, C., Poulter, N., Rodgers, A., Williams, B., Bompoint, S., de Galan, B. E., Joshi, R., & Travert, F. (2008). Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. The New England Journal of Medicine, 358(24), 2560–2572.PubMedCrossRefGoogle Scholar
  12. 12.
    Duckworth, W., Abraira, C., Moritz, T., Reda, D., Emanuele, N., Reaven, P. D., Zieve, F. J., Marks, J., Davis, S. N., Hayward, R., Warren, S. R., Goldman, S., McCarren, M., Vitek, M. E., Henderson, W. G., Huang, G. D., & VADT Investigators. (2009). Glucose control and vascular complications in veterans with type 2 diabetes. The New England Journal of Medicine, 360(2), 129–139.PubMedCrossRefGoogle Scholar
  13. 13.
    Marre, M. (1999). Genetics and the prediction of complications in type 1 diabetes. Diabetes Care, 22(Suppl. 2), B53–B58.PubMedGoogle Scholar
  14. 14.
    Ruiz, J. (1997). Diabetes mellitus and late complications: influence of genetic factors. Diabetes & Metabolism, 23(Suppl. 2), 57–63.Google Scholar
  15. 15.
    Pignoli, P., Tremoli, E., Poli, A., et al. (1986). Intimal plus medial thickness of arterial wall: a direct measurement with ultrasound imaging. Circulation, 74, 1399–1406.PubMedCrossRefGoogle Scholar
  16. 16.
    Persson, J., Stavenow, L., Wikstrand, J., et al. (1992). Noninvasive quantification of atherosclerotic lesions. Reproducibility of ultrasonographic measurement of arterial wall thickness and plaque size. Arteriosclerosis and Thrombosis, 12, 261–266.PubMedCrossRefGoogle Scholar
  17. 17.
    Carr, J. J., Crouse, J. R., Goff, D. C., Burke, G. L., et al. (2000). Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. American Journal of Roentgenology, 174, 915–921.PubMedGoogle Scholar
  18. 18.
    Raggi, P., Callister, T. Q., Cooil, B., He, Z. X., Lippolis, N. J., Russo, D. J., Zelinger, A., & Mahmarian, J. J. (2000). Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation, 101, 850–855.PubMedCrossRefGoogle Scholar
  19. 19.
    Edmonds, M. E. (2000). Medial arterial calcification and diabetes mellitus. Zeitschrift fur Kardiologie, 89(Suppl. 2), 101–104.PubMedCrossRefGoogle Scholar
  20. 20.
    Lange, L. A., Bowden, D. W., Langefeld, C. D., Wagenknecht, L. E., Carr, J. J., Rich, S. S., Riley, W. A., & Freedman, B. I. (2002). Heritability of carotid artery intima–medial thickness in type 2 diabetes. Stroke, 33(7), 1876–1881.PubMedCrossRefGoogle Scholar
  21. 21.
    Wagenknecht, L. E., Bowden, D. W., Carr, J. J., Langefeld, C. D., Freedman, B. I., & Rich, S. S. (2001). Familial aggregation of coronary artery calcium in families with type 2 diabetes. Diabetes, 50, 861–866.PubMedCrossRefGoogle Scholar
  22. 22.
    Polonovski, M., & Jayle, M. F. (1938). Existence dans le plasma sanguine d’une substance activant l’action peroxydasique de l’hémoglobine. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 129, 457–460.Google Scholar
  23. 23.
    Polonovski, M., & Jayle, M. F. (1940). Sur la préparation d'une nouvelle fraction des protéines plasmatiques l'haptoglobine. Compt Rend Acad Sci, 211, 517–519.Google Scholar
  24. 24.
    Kalmovarin, N., Friedrichs, W. E., O'Brien, H. V., Linehan, L. A., Bowman, B. H., & Yang, F. (1991). Extrahepatic expression of plasma protein genes during inflammation. Inflammation, 15, 369–379.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, F., Friedrichs, W. E., Navarijo-Ashbaugh, A. L., deGraffenried, L. A., Bowman, B. H., & Coalson, J. J. (1995). Cell type-specific and inflammatory-induced expression of haptoglobin gene in lung. Laboratory Investigation, 73(3), 433–440.PubMedGoogle Scholar
  26. 26.
    Friedrichs, W. E., Navarijo-Ashbaugh, A. L., Bowman, B. H., & Yang, F. (1995). Expression and inflammatory regulation of haptoglobin gene in adipocytes. Biochemical and Biophysical Research Communications, 209, 250–256.PubMedCrossRefGoogle Scholar
  27. 27.
    Kanakoudi, F., Drossou, V., Tzimouli, V., Diamanti, E., Konstantinidis, T., Germenis, A., & Kremenopoulos, G. (1995). Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clinical Chemistry, 41, 605–608.PubMedGoogle Scholar
  28. 28.
    Gabay, C., & Kushner, I. (1999). Mechanisms of disease: acute-phase proteins and other systemic responses to inflammation. New Engl J Med, 340, 448–454.PubMedCrossRefGoogle Scholar
  29. 29.
    Bowman, B. H., & Kurosky, A. (1982). Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Advances in Human Genetics, 12, 189–261.PubMedCrossRefGoogle Scholar
  30. 30.
    Langlois, M. R., & Delanghe, J. R. (1996). Biological and clinical significance of haptoglobin polymorphism in humans. Clinical Chemistry, 42, 1589–1600.PubMedGoogle Scholar
  31. 31.
    Graversen, J. H., Madsen, M., & Moestrup, S. K. (2002). CD163: a signal receptor scavenging haptoglobin–hemoglobin complexes from plasma. The International Journal of Biochemistry & Cell Biology, 34(4), 309–314.CrossRefGoogle Scholar
  32. 32.
    Garby, L., & Noyes, W. D. (1959). Studies on hemoglobin metabolism: I. The kinetic properties of the plasma hemoglobin pool in normal man. The Journal of Clinical Investigation, 38, 1479–1483.PubMedCrossRefGoogle Scholar
  33. 33.
    Sadrzadeh, S. M. H., Graf, E., Panter, S. S., Hallaway, P. E., & Eaton, J. W. (1984). Hemoglobin: a biologic Fenton reagent. Journal of Biological Chemistry, 259, 14354–14356.PubMedGoogle Scholar
  34. 34.
    Nakhoul, F. M., Miller-Lotan, R., Awad, H., Asleh, R., Kheir, J., Nakhoul, N., Asaf, R., Abu-Saleh, N., & Levy, A. P. (2009). Pharmacogenomic effect of vitamin E on kidney structure and function in transgenic mice with the haptoglobin 2-2 genotype and diabetes mellitus. American Journal of Physiology. Renal Physiology, 296, F830–F838.PubMedCrossRefGoogle Scholar
  35. 35.
    Dessy, C., & Ferron, O. (2004). Pathophysiological roles of nitric oxide: in the heart and the coronary vasculature. Current Medical Chemistry—Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 3, 207–216.CrossRefGoogle Scholar
  36. 36.
    Azarov, I., He, X., Jeffers, A., Basu, S., Ucer, B., Hantgan, R. R., Levy, A., & Kim-Shapiro, D. B. (2008). Rate of nitric oxide scavenging by hemoglobin bound to haptoglobin. Nitric Oxide, 18, 296–302.PubMedCrossRefGoogle Scholar
  37. 37.
    Orchard, T. J., Costacou, T., Kretowski, A., & Nesto, R. W. (2006). Type 1 diabetes and coronary artery disease. Diabetes Care, 29, 2528–2538.PubMedCrossRefGoogle Scholar
  38. 38.
    Yu, Y., Thorpe, S. R., Jenkins, A. J., Shaw, J. N., Sochaski, M. A., McGee, D., Aston, C. E., Orchard, T. J., Silvers, N., Peng, Y. G., McKnight, J. A., Baynes, J. W., Lyons, T. J., & The DCCT/EDIC Research Group. (2006). Advanced glycation end-products and methionine sulphoxide in skin collagen of patients with type 1 diabetes. Diabetologia, 49, 2488–2498.PubMedCrossRefGoogle Scholar
  39. 39.
    Endemann, D. H., & Schiffrin, E. L. (2004). Nitric oxide, oxidative excess, and vascular complications of diabetes mellitus. Current Hypertension Reports, 6, 85–89.PubMedCrossRefGoogle Scholar
  40. 40.
    Smithies, O. (1955). Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. The Biochemical Journal, 61, 629–641.PubMedGoogle Scholar
  41. 41.
    Wejman, J. C., Hovsepian, D., Wall, J. S., Hainfeld, J. F., & Greer, J. (1984). Structure and assembly of haptoglobin polymers by electron microscopy. Journal of Molecular Biology, 174, 343–368.PubMedCrossRefGoogle Scholar
  42. 42.
    Carter, K., & Worwood, M. (2007). Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases. International Journal of Laboratory Hematology, 29(2), 92–110.PubMedCrossRefGoogle Scholar
  43. 43.
    Asleh, R., Marsh, S., Shilkrut, M., Binah, O., Guetta, J., Lejbkowicz, F., Enav, B., Shehadeh, N., Kanter, Y., Lache, O., Cohen, O., Levy, N. S., & Levy, A. P. (2003). Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circulation Research, 92, 1193–1200.PubMedCrossRefGoogle Scholar
  44. 44.
    Melamed-Frank, M., Lache, O., Enav, B. I., Szafranek, T., Levy, N. S., Ricklis, R. M., & Levy, A. P. (2001). Structure–function analysis of the antioxidant properties of haptoglobin. Blood, 98, 3693–3698.PubMedCrossRefGoogle Scholar
  45. 45.
    Asleh, R., Guetta, J., Kalet-Litman, S., Miller-Lotan, R., & Levy, A. P. (2005). Haptoglobin genotype and diabetes dependent differences in iron mediated oxidative stress in vitro and in vivo. Circulation Research, 96, 435–441.PubMedCrossRefGoogle Scholar
  46. 46.
    Levy, A. P., Purushothaman, K. R., Levy, N. S., Purushothaman, M., Strauss, M., Asleh, R., Marsh, S., Cohen, O., Moestrup, S. K., Moller, H. J., Zias, E. A., Benhayon, D., Fuster, V., & Moreno, P. R. (2007). Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: implications for the response to intraplaque hemorrhage and plaque vulnerability. Circulation Research, 101, 106–110.PubMedCrossRefGoogle Scholar
  47. 47.
    Asleh, R., Blum, S., Kalet-Litman, S., Alshiek, J., Miller-Lotan, R., Asaf, R., Rock, W., Aviram, M., Milman, U., Shapira, C., Abassi, Z., & Levy, A. P. (2008). Correction of HDL dysfunction in individuals with diabetes and the haptoglobin 2-2 genotype. Diabetes, 57, 2794–2800.PubMedCrossRefGoogle Scholar
  48. 48.
    Kunitake, S. T., Carilli, C. T., Lau, K., Protter, A. A., Naya-Vigne, J., & Kane, J. P. (1994). Identification of proteins associated with apolipoprotein A-I-containing lipoproteins purified by selected-affinity immunosorption. Biochemistry, 33, 1988–1993.PubMedCrossRefGoogle Scholar
  49. 49.
    Porta, A., Cassano, E., Balestrieri, M., Bianco, M., Picone, R., De Stefano, C., & Abrescia, P. (1999). Haptoglobin transport into human ovarian follicles and its binding to apolipoprotein A-1. Zygote, 7, 67–77.PubMedCrossRefGoogle Scholar
  50. 50.
    Spagnuolo, M. S., Cigliano, L., D'Andrea, L. D., Pedone, C., & Abrescia, P. (2005). Assignment of the binding site for haptoglobin on apolipoprotein A-I. Journal of Biological Chemistry, 280, 1193–1198.PubMedCrossRefGoogle Scholar
  51. 51.
    Watanabe, J., Chou, K. J., Liao, J. C., Miao, Y., Meng, H. H., Ge, H., Grijalva, V., Hama, S., Kozak, K., Buga, G., Whitelegge, J. P., Lee, T. D., Farias-Eisner, R., Navab, M., Fogelman, A. M., & Reddy, S. T. (2007). Differential association of hemoglobin with proinflammatory high density lipoproteins in atherogenic/hyperlipidemic mice. A novel biomarker of atherosclerosis. Journal of Biological Chemistry, 282, 23698–23707.PubMedCrossRefGoogle Scholar
  52. 52.
    Watanabe, J., Grijalva, V., Hama, S., Barbour, K., Berger, F. G., Navab, M., Fogelman, A. M., & Reddy, S. T. (2009). Hemoglobin and its scavenger protein haptoglobin associate with apoA-1-containing particles and influence the inflammatory properties and function of high density lipoprotein. Journal of Biological Chemistry, 284, 18292–18301.PubMedCrossRefGoogle Scholar
  53. 53.
    Asleh, R., & Levy, A. P. (2005). In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vascular Health and Risk Management, 1, 19–28.PubMedCrossRefGoogle Scholar
  54. 54.
    Conway, B., Fried, L., & Orchard, T. J. (2008). Hemoglobin and overt nephropathy complications in type 1 diabetes. Annals of Epidemiology, 18, 147–155.PubMedCrossRefGoogle Scholar
  55. 55.
    Levy, A. P., Hochberg, I., Jablonski, K., Resnick, H. E., Lee, E. T., Best, L., Howard, B. V., & Strong Heart Study. (2002). Haptoglobin genotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the Strong Heart Study. Journal of the American College of Cardiology, 40, 1984–1990.PubMedCrossRefGoogle Scholar
  56. 56.
    Roguin, A., Koch, W., Kastrati, A., Aronson, D., Schomig, A., & Levy, A. P. (2003). Haptoglobin genotype is predictive of major adverse cardiac events in the 1-year period after percutaneous transluminal coronary angioplasty in individuals with diabetes. Diabetes Care, 26, 2628–2631.PubMedCrossRefGoogle Scholar
  57. 57.
    Suleiman, M., Aronson, D., Asleh, R., Kapeliovich, M. R., Roguin, A., Meisel, S. R., Shochat, M., Sulieman, A., Reisner, S. A., Markiewicz, W., Hammerman, H., Lotan, R., Levy, N. S., & Levy, A. P. (2005). Haptoglobin polymorphism predicts 30-day mortality and heart failure in patients with diabetes and acute myocardial infarction. Diabetes, 54, 2802–2806.PubMedCrossRefGoogle Scholar
  58. 58.
    Milman, U., Blum, S., Shapira, C., Aronson, D., Miller-Lotan, R., Anbinder, Y., Alshiek, J., Bennett, L., Kostenko, M., Landau, M., Keidar, S., Levy, Y., Khemlin, A., Radan, A., & Levy, A. P. (2008). Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 341–347.PubMedCrossRefGoogle Scholar
  59. 59.
    Costacou, T., Ferrell, R. E., & Orchard, T. J. (2008). Haptoglobin genotype: a determinant of cardiovascular complication risk in type 1 diabetes. Diabetes, 57, 1702–1706.PubMedCrossRefGoogle Scholar
  60. 60.
    Simpson, M., Snell-Bergeon, J. K., Kinney, G. L., Lache, O., Miller-Lotan, R., Anbinder, Y., Rewers, M. J., & Levy, A. P. (2011). Haptoglobin genotype predicts development of coronary artery calcification in a prospective cohort of patients with type 1 diabetes. Cardiovascular Diabetology, 10, 99.PubMedCrossRefGoogle Scholar
  61. 61.
    Levy, A. P., Levy, J. E., Kalet-Litman, S., Miller-Lotan, R., Levy, N. S., Asaf, R., Guetta, J., Yang, C., Purushothaman, K. R., Fuster, V., & Moreno, P. R. (2007). Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 134–140.PubMedCrossRefGoogle Scholar
  62. 62.
    Kalet-Litman, S., Moreno, P. R., & Levy, A. P. (2010). The haptoglobin 2-2 genotype is associated with increased redox active hemoglobin derived iron in the atherosclerotic plaque. Atherosclerosis, 209, 28–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Moreno, P. R., Purushothaman, K. R., Purushothaman, M., Muntner, P., Levy, N. S., Fuster, V., Fallon, J. T., Lento, P. A., Winterstern, A., & Levy, A. P. (2008). Haptoglobin genotype is a major determinant of the amount of iron in the human atherosclerotic plaque. Journal of the American College of Cardiology, 52, 1049–1051.PubMedCrossRefGoogle Scholar
  64. 64.
    Lioupis, C., Barbatis, C., Drougou, A., Koliaraki, V., Mamalaki, A., Klonaris, C., Georgopoulos, S., Andrikopoulos, V., & Bastounis, E. (2011). Association of haptoglobin genotype and common cardiovascular risk factors with the amount of iron in atherosclerotic carotid plaques. Atherosclerosis, 216, 131–138.PubMedCrossRefGoogle Scholar
  65. 65.
    Asleh, R., Miller-Lotan, R., Aviram, M., Hayek, T., Yulish, M., Levy, J. E., Miller, B., Blum, S., Milman, U., Shapira, C., & Levy, A. P. (2006). Haptoglobin genotype is a regulator of reverse cholesterol transport in diabetes in vitro and in vivo. Circulation Research, 99, 1419–1425.PubMedCrossRefGoogle Scholar
  66. 66.
    Orchard, T. J. (1991). Dyslipoproteinemia and diabetes. Endocrinology and Metabolism Clinics of North America, 19, 361–380.Google Scholar
  67. 67.
    Costacou, T., Evans, R. W., Orchard, T. J. (2011) High density lipoprotein cholesterol: is higher always better? Journal of Clinical Lipidology, 5(5), 387–394. PMCID: PMC3190122.Google Scholar
  68. 68.
    Brouwers, A., Langlois, M., Delanghe, J., Billiet, J., De Buyzere, M., Vercaemst, R., Rietzschel, E., Bernard, D., & Blaton, V. (2004). Oxidized low-density lipoprotein, iron stores, and haptoglobin polymorphism. Atherosclerosis, 176(1), 189–195.PubMedCrossRefGoogle Scholar
  69. 69.
    Libby, P., Ridker, P. M., & Hansson, G. K. (2009). Inflammation in atherosclerosis: from pathophysiology to practice. Journal of the American College of Cardiology, 54, 2129–2138.PubMedCrossRefGoogle Scholar
  70. 70.
    Philippidis, P., Mason, J. C., Evans, B. J., Nadra, I., Taylor, K. M., Haskard, D. O., & Landis, R. C. (2004). Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte–macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circulation Research, 94(1), 119–126.PubMedCrossRefGoogle Scholar
  71. 71.
    Sarnak, M. J., Levey, A. S., Schoolwerth, A. C., Coresh, J., Culleton, B., Hamm, L. L., McCullough, P. A., Kasiske, B. L., Kelepouris, E., Klag, M. J., Parfrey, P., Pfeffer, M., Raij, L., Spinosa, D. J., Wilson, P. W., & American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. (2003). Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension, 42, 1050–1065.PubMedCrossRefGoogle Scholar
  72. 72.
    Dinneen, S. F., & Gerstein, H. C. (1997). The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus: a systematic overview of the literature. Archives of Internal Medicine, 157, 1413–1418.PubMedCrossRefGoogle Scholar
  73. 73.
    Jensen, T., Borch-Johnsen, K., Kofoed-Enevoldsen, A., & Deckert, T. (1987). Coronary heart disease in young type 1 (insulin-dependent) diabetic patients with and without diabetic nephropathy: incidence and risk factors. Diabetologia, 30, 144–148.PubMedCrossRefGoogle Scholar
  74. 74.
    Messent, J. W. C., Elliott, T. G., Hill, R. D., Jarrett, R. J., Keen, H., & Viberti, G. C. (1992). Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney International, 41, 836–839.PubMedCrossRefGoogle Scholar
  75. 75.
    Tuomilehto, J., Borch-Johnsen, K., Molarius, A., Forsén, T., Rastenyte, D., Sarti, C., & Reunanen, A. (1998). Incidence of cardiovascular disease in type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland. Diabetologia, 41, 784–790.PubMedCrossRefGoogle Scholar
  76. 76.
    Torffvit, O., Lövestam-Adrian, M., Agardh, E., & Agardh, C.-D. (2005). Nephropathy, but not retinopathy, is associated with the development of heart disease in type I diabetes: a 12-year observation study of 462 patients. Diabetic Medicine, 22, 723–729.PubMedCrossRefGoogle Scholar
  77. 77.
    Costacou, T., Ferrell, R. E., Ellis, D., & Orchard, T. J. (2009). Haptoglobin genotype and renal function decline in type 1 diabetes. Diabetes, 58, 2904–2909.PubMedCrossRefGoogle Scholar
  78. 78.
    Kramer, H. J., Nguyen, Q. D., Curhan, G., & Hsu, C. Y. (2003). Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA, 289, 3273–3277.PubMedCrossRefGoogle Scholar
  79. 79.
    Retnakaran, R., Cull, C. A., Thorne, K. I., Adler, A. I., & Holman, R. R. (2006). UKPDS Study risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes, 55, 1832–1839.PubMedCrossRefGoogle Scholar
  80. 80.
    Costacou, T., Ellis, D., Fried, L., & Orchard, T. J. (2007). Sequence of progression of albuminuria and decreased GFR in persons with type 1 diabetes: a cohort study. American Journal of Kidney Diseases, 50, 721–732.PubMedCrossRefGoogle Scholar
  81. 81.
    Hiller, R., Sperduto, R. D., Podgor, M. J., Ferris, F. L., 3rd, & Wilson, P. W. (1988). Diabetic retinopathy and cardiovascular disease in type II diabetics. The Framingham Heart Study and the Framingham Eye Study. American Journal of Epidemiology, 128(2), 402–409.PubMedGoogle Scholar
  82. 82.
    Wong, T. Y., Klein, R., Klein, B. E. K., Tielsch, J. M., Hubbard, L., & Nieto, F. J. (2001). Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Survey of Ophthalmology, 46, 59–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Cheung, N., Bluemke, D. A., Klein, R., Sharrett, A. R., Islam, F. M., Cotch, M. F., Klein, B. E., Criqui, M. H., & Wong, T. Y. (2007). Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis. Journal of the American College of Cardiology, 50, 48–55.PubMedCrossRefGoogle Scholar
  84. 84.
    Wong, T. Y., Wong, T. Y., Cheung, N., Islam, A. F. M., Klein, R., Criqui, M. H., Cotch, M. F., Carr, J. J., Klein, B. E., & Sharrett, A. R. (2008). Relation of retinopathy to coronary artery calcification: the multi-ethnic study of atherosclerosis. American Journal of Epidemiology, 167(1), 51–58.PubMedCrossRefGoogle Scholar
  85. 85.
    Kawasaki, R., Cheung, N., Islam, F. M., Klein, R., Klein, B. E., Cotch, M. F., Sharrett, A. R., O'Leary, D., Wong, T. Y., & Multi-Ethnic Study of Atherosclerosis. (2011). Is diabetic retinopathy related to subclinical cardiovascular disease? Ophthalmology, 118, 860–865.PubMedCrossRefGoogle Scholar
  86. 86.
    Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.PubMedCrossRefGoogle Scholar
  87. 87.
    Goldenberg-Cohen, N., Gabbay, M., Dratviman-Storobinsky, O., Reich, E., Axer-Siegel, R., Weinberger, D., & Gabbay, U. (2011). Does haptoglobin genotype affect early onset of diabetic retinopathy in patients with type 2 diabetes? Retina, 31(8), 1574–1580.PubMedCrossRefGoogle Scholar
  88. 88.
    Rapola, J. M., Virtamo, J., Haukka, J. K., Heinonen, O. P., Albanes, D., Taylor, P. R., & Huttunen, J. K. (1996). Effect of vitamin E and beta carotene on the incidence of angina pectoris: a randomized, double-blind, controlled trial. JAMA, 275, 693–698.PubMedCrossRefGoogle Scholar
  89. 89.
    Yusuf, S., Dagenais, G., Pogue, J., Bosch, J., Sleight, P., & for the Heart Outcomes Prevention Evaluation Study Investigators. (2000). Vitamin E supplementation and cardiovascular events in high-risk patients. The New England Journal of Medicine, 342, 154–160.PubMedCrossRefGoogle Scholar
  90. 90.
    Lee, I. M., Cook, N. R., Gaziano, J. M., Gordon, D., Ridker, P. M., Manson, J. E., Hennekens, C. H., & Buring, J. E. (2005). Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA, 294(1), 56–65.PubMedCrossRefGoogle Scholar
  91. 91.
    de Gaetano, G., & for the Collaborative Group of the Primary Prevention Project. (2001). Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Lancet, 357, 89–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Virtamo, J., Rapola, J. M., Ripatti, S., Heinonen, O. P., Taylor, P. R., Albanes, D., & Huttunen, J. K. (1998). Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease. Archives of Internal Medicine, 158, 668–675.PubMedCrossRefGoogle Scholar
  93. 93.
    Hodis, H. N., Mack, W. J., LaBree, L., Mahrer, P. R., Sevanian, A., Liu, C. R., Liu, C. H., Hwang, J., Selzer, R. H., Azen, S. P., & for the VEAPS Research Group. (2002). Alpha-tocopherol supplementation in healthy individuals reduces low density lipoprotein oxidation but not atherosclerosis: the Vitamin E Atherosclerosis Prevention Study (VEAPS). Circulation, 106, 1453–1459.PubMedCrossRefGoogle Scholar
  94. 94.
    Cook, N. R., Albert, C. M., Gaziano, J. M., Zaharris, E., MacFadyen, J., Danielson, E., Buring, J. E., & Manson, J. E. (2007). A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women’s Antioxidant Cardiovascular Study. Archives of Internal Medicine, 167, 1610–1618.PubMedCrossRefGoogle Scholar
  95. 95.
    Levy, A. P., Gerstein, H., Lotan, R., Ratner, R., McQueen, M., Lonn, E., & Pogue, J. (2004). The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Diabetes Care, 27, 2767.PubMedCrossRefGoogle Scholar
  96. 96.
    Blum, S., Vardi, M., Levy, N. S., Miller-Lotan, R., & Levy, A. P. (2010). The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Atherosclerosis, 211, 25–27.PubMedCrossRefGoogle Scholar
  97. 97.
    Blum, S., Milman, U., Shapira, C., Miller-Lotan, R., Bennett, L., Kostenko, M., Landau, M., Keidar, S., Levy, Y., Khemlin, A., Radan, A., & Levy, A. P. (2008). Dual therapy with statins and antioxidants is superior to statins alone in decreasing the risk of cardiovascular disease in a subgroup of middle-aged individuals with both diabetes mellitus and the haptoglobin 2-2 genotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, e18–e20.PubMedCrossRefGoogle Scholar
  98. 98.
    Blum, S., Milman, U., Shapira, C., Levy, N. S., Miller-Lotan,. R., Levy, A. P. (2010) Vitamin E supplementation may provide cardiovascular benefit to Hp 2-2 diabetic individuals over and above that which can be obtained by treating to target for LDL and HbA1c. Circulation, 122, A10490 (abstract).Google Scholar
  99. 99.
    Engelen, W., Manuel-y-Keenoy, B., Vertommen, J., De Leeuw, I., & Van Gaal, L. (2005). Effects of micronized finofibrate and vitamin E on in vitro oxidation of lipoproteins in patients with type 1 diabetes mellitus. Diabetes & Metabolism, 31, 197–204.CrossRefGoogle Scholar
  100. 100.
    Farbstein, D., Blum, S., Pollak, M., Asaf, R., Viener, H. L., Lache, O., Asleh, R., Miller-Lotan, R., Barkay, I., Star, M., Schwartz, A., Kalet-Littman, S., Ozeri, D., Vaya, J., Tavori, H., Vardi, M., Laor, A., Bucher, S. E., Anbinder, Y., Moskovich, D., Abbas, N., Perry, N., & Levy, A. P. (2011). Vitamin E therapy results in a reduction in HDL function in individuals with diabetes and the haptoglobin 2-1 genotype. Atherosclerosis, 219, 240–244.PubMedCrossRefGoogle Scholar
  101. 101.
    Levy, A. P., Friedenberg, P., Lotan, R., Ouyang, P., Tripputi, M., Higginson, L., Cobb, F. R., Tardif, J. C., Bittner, V., & Howard, B. V. (2004). The effect of vitamin therapy on the progression of coronary artery atherosclerosis varies by haptoglobin type in postmenopausal women. Diabetes Care, 27(4), 925–930.PubMedCrossRefGoogle Scholar
  102. 102.
    Waters, D. D., Alderman, E. L., Hsia, J., Howard, B. V., Cobb, F. R., Rogers, W. J., Ouyang, P., Thompson, P., Tardif, J. C., Higginson, L., Bittner, V., Steffes, M., Gordon, D. J., Proschan, M., Younes, N., & Verter, J. I. (2002). Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women. JAMA, 288, 2432–2440.PubMedCrossRefGoogle Scholar
  103. 103.
    Mowri, H. O., Frei, B., & Keaney, J. F., Jr. (2000). Glucose enhancement of LDL oxidation is strictly metal ion dependent. Free Radical Biology & Medicine, 29(9), 814–824.CrossRefGoogle Scholar
  104. 104.
    Asleh, R., & Levy, A. P. (2010). Divergent effects of alpha-tocopherol and vitamin C on the generation of dysfunctional HDL associated with diabetes and the Hp 2-2 genotype. Antioxidants & Redox Signaling, 12(2), 209–217.CrossRefGoogle Scholar
  105. 105.
    Klein, E. A., Thompson, I. M., Jr., Tangen, C. M., Crowley, J. J., Lucia, M. S., Goodman, P. J., Minasian, L. M., Ford, L. G., Parnes, H. L., Gaziano, J. M., Karp, D. D., Lieber, M. M., Walther, P. J., Klotz, L., Parsons, J. K., Chin, J. L., Darke, A. K., Lippman, S. M., Goodman, G. E., Meyskens, F. L., Jr., & Baker, L. H. (2011). Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 306(14), 1549–1556.PubMedCrossRefGoogle Scholar
  106. 106.
    Heinonen, O. P., Albanes, D., Virtamo, J., Taylor, P. R., Huttunen, J. K., Hartman, A. M., Haapakoski, J., Malila, N., Rautalahti, M., Ripatti, S., Mäenpää, H., Teerenhovi, L., Koss, L., Virolainen, M., & Edwards, B. K. (1998). Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. Journal of the National Cancer Institute, 90(6), 440–446.PubMedCrossRefGoogle Scholar
  107. 107.
    Gaziano, J. M., Glynn, R. J., Christen, W. G., Kurth, T., Belanger, C., MacFadyen, J., Bubes, V., Manson, J. E., Sesso, H. D., & Buring, J. E. (2009). Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial. JAMA, 301(1), 52–62.PubMedCrossRefGoogle Scholar
  108. 108.
    Lonn, E., Bosch, J., Yusuf, S., Sheridan, P., Pogue, J., Arnold, J. M., Ross, C., Arnold, A., Sleight, P., Probstfield, J., Dagenais, G. R., & HOPE and HOPE-TOO Trial Investigators. (2005). Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA, 293(11), 1338–1347.PubMedCrossRefGoogle Scholar
  109. 109.
    Brigelius-Flohé, R., & Traber, M. G. (1999). Vitamin E: function and metabolism. The FASEB Journal, 13(10), 1145–1155.Google Scholar
  110. 110.
    Traber, M. G., Elsner, A., & Brigelius-Flohé, R. (1998). Synthetic as compared to natural vitamin E is preferentially excreted as α-CEHC in human urine: studies using deuterated α-tocopheryl acetates. FEBS, 437, 145–148.CrossRefGoogle Scholar
  111. 111.
    Yamauchi, J., Iwamoto, T., Kida, S., Masushige, S., Yamada, K., & Esashi, T. (2001). Tocopherol-associated protein is a ligand-dependent transcriptional activator. Biochemical and Biophysical Research Communications, 285(2), 295–299.PubMedCrossRefGoogle Scholar
  112. 112.
    Institute of Medicine (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington: National Academies Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of EpidemiologyUniversity of PittsburghPittsburghUSA
  2. 2.Technion Faculty of MedicineTechnion Israel Institute of TechnologyHaifaIsrael

Personalised recommendations