Arterial Stiffness: Basic Concepts and Measurement Techniques

  • Julio A. ChirinosEmail author


Arterial stiffness is highly relevant to cardiovascular disease. Arterial stiffness is central to the pathogenesis of isolated systolic hypertension and directly impacts left ventricular afterload, pressure pulsatility in the arterial tree, and its penetration into the microvasculature of target organs such as the brain and kidney. Arterial stiffness is affected by various risk factors and biologic processes. Measurements of arterial stiffness may therefore not only provide information about prevalent processes, but also valuable information regarding the cumulative history of risk factor exposure. Available studies consistently demonstrate that large artery stiffness, measured via carotid-femoral pulse wave velocity, independently predicts the risk of incident cardiovascular events in clinical and community-based cohorts. Understanding the basic principles and definitions related to arterial stiffness is therefore desirable for cardiovascular clinicians and researchers. This introductory paper reviews basic physical principles and definitions regarding arterial stiffness and the most important non-invasive methods for its quantification in vivo.


Arterial stiffness Compliance Distensibility Pulse wave velocity Elastic modulus 


  1. 1.
    Cohen, D. L., & Townsend, R. R. (2011). Update on pathophysiology and treatment of hypertension in the elderly. Current Hypertension Reports, 13, 330–337.PubMedCrossRefGoogle Scholar
  2. 2.
    Franklin, S. S. (2006). Hypertension in older people: Part 1. Journal of Clinical Hypertension (Greenwich, Conn.), 8, 444–449.CrossRefGoogle Scholar
  3. 3.
    Nichols, W. W., & O'Rourke, M. F. (2005). Mcdonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London, UK: Oxford University Press.Google Scholar
  4. 4.
    Segers, P., & Verdonck, P. (2002). Principles of vascular physiology. In Lanzer P., Topol E. (Eds) Panvascular Medicine: Integrated Clinical Management (pp 116–137). Berlin, Germany: Springer. Google Scholar
  5. 5.
    Chirinos, J. A., & Segers, P. (2010). Noninvasive evaluation of left ventricular afterload: Part 1: Pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension, 56, 555–562.PubMedCrossRefGoogle Scholar
  6. 6.
    Chirinos, J. A., & Segers, P. (2010). Noninvasive evaluation of left ventricular afterload: Part 2: Arterial pressure-flow and pressure–volume relations in humans. Hypertension, 56, 563–570.PubMedCrossRefGoogle Scholar
  7. 7.
    O'Rourke, M. F., & Safar, M. E. (2005). Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension, 46, 200–204.PubMedCrossRefGoogle Scholar
  8. 8.
    Vermeersch, S. J., Rietzschel, E. R., De Buyzere, M. L., De Bacquer, D., De Backer, G., Van Bortel, L. M., Gillebert, T. C., Verdonck, P. R., & Segers, P. (2008). Determining carotid artery pressure from scaled diameter waveforms: Comparison and validation of calibration techniques in 2026 subjects. Physiological Measurement, 29, 1267–1280.PubMedCrossRefGoogle Scholar
  9. 9.
    Franklin, S. S. (2008). Beyond blood pressure: Arterial stiffness as a new biomarker of cardiovascular disease. Journal of the American Society of Hypertension: JASH, 2, 140–151.PubMedCrossRefGoogle Scholar
  10. 10.
    Payne, R. A., Wilkinson, I. B., & Webb, D. J. (2010). Arterial stiffness and hypertension: Emerging concepts. Hypertension, 55, 9–14.PubMedCrossRefGoogle Scholar
  11. 11.
    McEniery, C. M., Spratt, M., Munnery, M., Yarnell, J., Lowe, G. D., Rumley, A., Gallacher, J., Ben-Shlomo, Y., Cockcroft, J. R., & Wilkinson, I. B. (2010). An analysis of prospective risk factors for aortic stiffness in men: 20-year follow-up from the caerphilly prospective study. Hypertension, 56, 36–43.PubMedCrossRefGoogle Scholar
  12. 12.
    Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. Journal of the American College of Cardiology, 55, 1318–1327.PubMedCrossRefGoogle Scholar
  13. 13.
    Boutouyrie, P., Tropeano, A. I., Asmar, R., Gautier, I., Benetos, A., Lacolley, P., & Laurent, S. (2002). Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension, 39, 10–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Mattace-Raso, F. U., van der Cammen, T. J., Hofman, A., van Popele, N. M., Bos, M. L., Schalekamp, M. A., Asmar, R., Reneman, R. S., Hoeks, A. P., Breteler, M. M., & Witteman, J. C. (2006). Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam study. Circulation, 113, 657–663.PubMedCrossRefGoogle Scholar
  15. 15.
    O'Rourke, M. F., Staessen, J. A., Vlachopoulos, C., Duprez, D., & Plante, G. E. (2002). Clinical applications of arterial stiffness; definitions and reference values. American Journal of Hypertension, 15, 426–444.PubMedCrossRefGoogle Scholar
  16. 16.
    Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I., & Struijker-Boudier, H. (2006). Expert consensus document on arterial stiffness: Methodological issues and clinical applications. European Heart Journal, 27, 2588–2605.PubMedCrossRefGoogle Scholar
  17. 17.
    Vlachopoulos, C., Dima, I., Aznaouridis, K., Vasiliadou, C., Ioakeimidis, N., Aggeli, C., Toutouza, M., & Stefanadis, C. (2005). Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation, 112, 2193–2200.PubMedCrossRefGoogle Scholar
  18. 18.
    Mitchell, G. F., Parise, H., Benjamin, E. J., Larson, M. G., Keyes, M. J., Vita, J. A., Vasan, R. S., & Levy, D. (2004). Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham heart study. Hypertension, 43, 1239–1245.PubMedCrossRefGoogle Scholar
  19. 19.
    Silver, F. H., Snowhill, P. B., & Foran, D. J. (2003). Mechanical behavior of vessel wall: A comparative study of aorta, vena cava, and carotid artery. Annals of Biomedical Engineering, 31, 793–803.PubMedCrossRefGoogle Scholar
  20. 20.
    McEniery, C. M., McDonnell, B. J., Soon, A., Aitken, S., Bolton, C. E., Munnery, M., Hickson, S. S., Yasmin, Maki-Petaja, K. M., Cockcroft, J. R., Dixon, A. K., & Wilkinson, I. B. (2009). Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension, 53, 524–531.PubMedCrossRefGoogle Scholar
  21. 21.
    Atkinson, J. (2008). Age-related medial elastocalcinosis in arteries: Mechanisms, animal models, and physiological consequences. Journal of Applied Physiology, 105, 1643–1651.PubMedCrossRefGoogle Scholar
  22. 22.
    Silacci, P. (2002). Advanced glycation end-products as a potential target for treatment of cardiovascular disease. Journal of Hypertension, 20, 1483–1485.PubMedCrossRefGoogle Scholar
  23. 23.
    Bank, A. J., Wang, H., Holte, J. E., Mullen, K., Shammas, R., & Kubo, S. H. (1996). Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation, 94, 3263–3270.PubMedGoogle Scholar
  24. 24.
    Zulliger, M. A., Rachev, A., & Stergiopulos, N. (2004). A constitutive formulation of arterial mechanics including vascular smooth muscle tone. American Journal of Physiology - Heart and Circulatory Physiology, 287, H1335–H1343.PubMedCrossRefGoogle Scholar
  25. 25.
    Hirai, T., Sasayama, S., Kawasaki, T., & Yagi, S. (1989). Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation, 80, 78–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell, G. F. (2009). Clinical achievements of impedance analysis. Medical & Biological Engineering & Computing, 47, 153–163.CrossRefGoogle Scholar
  27. 27.
    Mitchell, G. F. (2004). Arterial stiffness and wave reflection in hypertension: Pathophysiologic and therapeutic implications. Current Hypertension Reports, 6, 436–441.PubMedCrossRefGoogle Scholar
  28. 28.
    Mitchell, G. F. (2008). Effects of central arterial aging on the structure and function of the peripheral vasculature: Implications for end-organ damage. Journal of Applied Physiology, 105, 1652–1660.PubMedCrossRefGoogle Scholar
  29. 29.
    Meinders, J. M., & Hoeks, A. P. (2004). Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound in Medicine and Biology, 30, 147–154.PubMedCrossRefGoogle Scholar
  30. 30.
    Redheuil, A., Yu, W. C., Wu, C. O., Mousseaux, E., de Cesare, A., Yan, R., Kachenoura, N., Bluemke, D., & Lima, J. A. (2010). Reduced ascending aortic strain and distensibility: Earliest manifestations of vascular aging in humans. Hypertension, 55, 319–326.PubMedCrossRefGoogle Scholar
  31. 31.
    Herment, A., Kachenoura, N., Lefort, M., Bensalah, M., Dogui, A., Frouin, F., Mousseaux, E., & De Cesare, A. (2010). Automated segmentation of the aorta from phase contrast mr images: Validation against expert tracing in healthy volunteers and in patients with a dilated aorta. Journal of Magnetic Resonance Imaging: JMRI, 31, 881–888.PubMedCrossRefGoogle Scholar
  32. 32.
    Giannattasio, C., Salvi, P., Valbusa, F., Kearney-Schwartz, A., Capra, A., Amigoni, M., Failla, M., Boffi, L., Madotto, F., Benetos, A., & Mancia, G. (2008). Simultaneous measurement of beat-to-beat carotid diameter and pressure changes to assess arterial mechanical properties. Hypertension, 52, 896–902.PubMedCrossRefGoogle Scholar
  33. 33.
    Simon, A., & Levenson, J. (2001). Effect of hypertension on viscoelasticity of large arteries in humans. Current Hypertension Reports, 3, 74–79.PubMedCrossRefGoogle Scholar
  34. 34.
    Armentano, R. L., Graf, S., Barra, J. G., Velikovsky, G., Baglivo, H., Sanchez, R., Simon, A., Pichel, R. H., & Levenson, J. (1998). Carotid wall viscosity increase is related to intima-media thickening in hypertensive patients. Hypertension, 31, 534–539.PubMedGoogle Scholar
  35. 35.
    Colan, S. D., Borow, K. M., & Neumann, A. (1985). Use of the calibrated carotid pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection. American Heart Journal, 109, 1306–1310.PubMedCrossRefGoogle Scholar
  36. 36.
    Mahieu, D., Kips, J., Rietzschel, E. R., De Buyzere, M. L., Verbeke, F., Gillebert, T. C., De Backer, G. G., De Bacquer, D., Verdonck, P., Van Bortel, L. M., & Segers, P. (2010). Noninvasive assessment of central and peripheral arterial pressure (waveforms): Implications of calibration methods. Journal of Hypertension, 28, 300–305.PubMedCrossRefGoogle Scholar
  37. 37.
    Segers, P., Rietzschel, E. R., De Buyzere, M. L., Vermeersch, S. J., De Bacquer, D., Van Bortel, L. M., De Backer, G., Gillebert, T. C., & Verdonck, P. R. (2007). Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension, 49, 1248–1255.PubMedCrossRefGoogle Scholar
  38. 38.
    Holmes, W. M., Maclellan, S., Condon, B., Dufes, C., Evans, T. R., Uchegbu, I. F., & Schatzlein, A. G. (2008). High-resolution 3D isotropic MR imaging of mouse flank tumours obtained in vivo with solenoid RF micro-coil. Physics in Medicine and Biology, 53, 505–513.PubMedCrossRefGoogle Scholar
  39. 39.
    Carmi, E., Liu, S., Alon, N., Fiat, A., & Fiat, D. (2006). Resolution enhancement in mri. Magnetic Resonance Imaging, 24, 133–154.PubMedCrossRefGoogle Scholar
  40. 40.
    Sweitzer, N. K., Shenoy, M., Stein, J. H., Keles, S., Palta, M., LeCaire, T., & Mitchell, G. F. (2007). Increases in central aortic impedance precede alterations in arterial stiffness measures in type 1 diabetes. Diabetes Care, 30, 2886–2891.PubMedCrossRefGoogle Scholar
  41. 41.
    Westerhof, N., Lankhaar, J. W., & Westerhof, B. E. (2009). The arterial Windkessel. Medical & Biological Engineering & Computing, 47, 131–141.CrossRefGoogle Scholar
  42. 42.
    Schillaci, G., Parati, G., Pirro, M., Pucci, G., Mannarino, M. R., Sperandini, L., & Mannarino, E. (2007). Ambulatory arterial stiffness index is not a specific marker of reduced arterial compliance. Hypertension, 49, 986–991.PubMedCrossRefGoogle Scholar
  43. 43.
    Westerhof, N., Lankhaar, J. W., & Westerhof, B. E. (2007). Ambulatory arterial stiffness index is not a stiffness parameter but a ventriculo-arterial coupling factor. Hypertension, 49, e7. author reply e8-9.PubMedCrossRefGoogle Scholar
  44. 44.
    Kikuya, M., Staessen, J. A., Ohkubo, T., Thijs, L., Metoki, H., Asayama, K., Obara, T., Inoue, R., Li, Y., Dolan, E., Hoshi, H., Hashimoto, J., Totsune, K., Satoh, H., Wang, J. G., O'Brien, E., & Imai, Y. (2007). Ambulatory arterial stiffness index and 24-hour ambulatory pulse pressure as predictors of mortality in Ohasama, Japan. Stroke, 38, 1161–1166.PubMedCrossRefGoogle Scholar
  45. 45.
    Dolan, E., Thijs, L., Li, Y., Atkins, N., McCormack, P., McClory, S., O'Brien, E., Staessen, J. A., & Stanton, A. V. (2006). Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin outcome study. Hypertension, 47, 365–370.PubMedCrossRefGoogle Scholar
  46. 46.
    Hansen, T. W., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Li, Y., Dolan, E., Thijs, L., Wang, J. G., O'Brien, E., Ibsen, H., & Jeppesen, J. (2006). Ambulatory arterial stiffness index predicts stroke in a general population. Journal of Hypertension, 24, 2247–2253.PubMedCrossRefGoogle Scholar
  47. 47.
    Vlachopoulos, C., Aznaouridis, K., O'Rourke, M. F., Safar, M. E., Baou, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. European Heart Journal, 31, 1865–1871.PubMedCrossRefGoogle Scholar
  48. 48.
    Duprez, D. A., Jacobs, D. R., Jr., Lutsey, P. L., Bluemke, D. A., Brumback, L. C., Polak, J. F., Peralta, C. A., Greenland, P., & Kronmal, R. A. (2011). Association of small artery elasticity with incident cardiovascular disease in older adults: The multi-ethnic study of atherosclerosis. American Journal of Epidemiology, 174, 528–536.PubMedCrossRefGoogle Scholar
  49. 49.
    Vappou, J., Luo, J., & Konofagou, E. E. (2010). Pulse wave imaging for noninvasive and quantitative measurement of arterial stiffness in vivo. American Journal of Hypertension, 23, 393–398.PubMedCrossRefGoogle Scholar
  50. 50.
    Hermeling, E., Reesink, K. D., Kornmann, L. M., Reneman, R. S., & Hoeks, A. P. (2009). The dicrotic notch as alternative time-reference point to measure local pulse wave velocity in the carotid artery by means of ultrasonography. Journal of Hypertension, 27, 2028–2035.PubMedCrossRefGoogle Scholar
  51. 51.
    Suever, J. D., Oshinski, J., Rojas-Campos, E., Huneycutt, D., Cardarelli, F., Stillman, A. E., Raggi, P. (2012). Reproducibility of pulse wave velocity measurements with phase contrast magnetic resonance and applanation tonometry. International Journal of Cardiovascular Imaging. doi: 10.1007/s10554-011-9929-8
  52. 52.
    Deffieux, T., Gennisson, J. L., Bercoff, J., & Tanter, M. (2011). On the effects of reflected waves in transient shear wave elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 2032–2035.PubMedCrossRefGoogle Scholar
  53. 53.
    Woodrum, D. A., Romano, A. J., Lerman, A., Pandya, U. H., Brosh, D., Rossman, P. J., Lerman, L. O., & Ehman, R. L. (2006). Vascular wall elasticity measurement by magnetic resonance imaging. Magnetic Resonance in Medicine, 56, 593–600.PubMedCrossRefGoogle Scholar
  54. 54.
    Bernal, M., Nenadic, I., Urban, M. W., & Greenleaf, J. F. (2011). Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes. Journal of the Acoustical Society of America, 129, 1344–1354.PubMedCrossRefGoogle Scholar
  55. 55.
    Couade, M., Pernot, M., Prada, C., Messas, E., Emmerich, J., Bruneval, P., Criton, A., Fink, M., & Tanter, M. (2010). Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound in Medicine and Biology, 36, 1662–1676.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  1. 1.Philadelphia VA Medical CenterUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations