Right Ventricular Pacing, Mechanical Dyssynchrony, and Heart Failure

  • Alan J. BankEmail author
  • Ryan M. Gage
  • Kevin V. Burns


Cardiac pacing is a common treatment option for patients with sick sinus syndrome or atrioventricular block, with the ventricular pacing lead often secured in the convenient right ventricular (RV) apical location. While RV pacing reduces symptoms and limitations associated with heart block, it may have detrimental effects on cardiac structure and function, leading to heart failure (HF) in some patients. RV pacing creates electrical dyssynchrony similar to a left-bundle branch block, with conduction occurring cell-by-cell rather than through the His–Purkinje network. Studies have shown that impairment of myocardial metabolism, structure, and function related to RV pacing occurs regionally (most prominently near the pacing site) and globally, within the left ventricle. Strategies being studied to prevent or treat pacing-induced intraventricular mechanical dyssynchrony and HF include: initial biventricular rather than RV pacing in selected patients, programming to avoid or minimize RV pacing, use of alternate (non-apical) RV pacing sites, echocardiographic screening for development of pacing-induced dyssynchrony and HF, and upgrade to biventricular pacing.


Cardiac mechanics Hemodynamics Pacing Echocardiography Tissue Doppler imaging 

Supplementary material


Apical four-chamber echocardiograms of a patient with pacing-induced dyssynchrony and HF. The left panel shows a markedly hypokinetic septum, especially in the mid and apical regions. The right panel shows greatly improved septal function, and improved LV size and systolic function after upgrade to CRT. Global EF normalized to 60% following CRT upgrade (WMV 860 kb)


Parasternal short-axis echocardiograms of the same patient (ESM 1) with pacing induced dyssynchrony and HF. The regional wall motion abnormality in the septum improves along with global LV systolic function after upgrade to CRT (WMV 1,031 kb)


Apical four-chamber echocardiograms of a patient with pacing induced dyssynchrony and HF. Reprogramming of the patient’s pacemaker to a lower rate with extended AV delay reduced ventricular paced beats from 87% to 17%. Global EF significantly improved following reprogramming (right panel) (WMV 1,163 kb)


Parasternal short-axis echocardiograms of the same patient (ESM 3) with pacing-induced dyssynchrony and HF. Reprogramming of pacemaker settings to reduce RV pacing frequency markedly improved LV size and systolic function (WMV 1,480 kb)


  1. 1.
    Lamas, G. A., Lee, K. L., Sweeney, M. O., Silverman, R., et al. (2002). Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. The New England Journal of Medicine, 346, 1854–1862.PubMedCrossRefGoogle Scholar
  2. 2.
    Birnie, D., Williams, K., Guo, A., Mielniczuk, L., Davis, D., Lemery, R., et al. (2006). Reasons for escalating pacemaker implants. The American Journal of Cardiology, 98, 93–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Gammage, M., Schofield, S., Rankin, I., Bennett, M., Coles, P., & Pentecost, B. (1991). Benefit of single setting rate responsive ventricular pacing compared with fixed rate demand pacing in elderly patients. Pacing and Clinical Electrophysiology, 14, 147–180.CrossRefGoogle Scholar
  4. 4.
    Lamas, G. A., Pashos, C. L., Normand, S. L. T., & McNeil, B. (1995). Permanent pacemaker selection and subsequent survival in elderly Medicare pacemaker recipients. Circulation, 91, 1063–1069.PubMedGoogle Scholar
  5. 5.
    Sweeney, M. O., Bank, A. J., Nsah, E., Koullick, M., Zeng, Q. C., Hettrick, D., et al. (2007). Minimizing ventricular pacing to reduce atrial fibrillation in sinus node disease. The New England Journal of Medicine, 357, 1000–1008.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilkoff, B. L., Cook, J. R., Epstein, A. E., Greene, L., Hallstrom, A. P., Hsia, H., et al. (2002). Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator. The dual chamber and VVI implantable defibrillator (DAVID) trial. Journal of the American Medical Association, 288, 3115–3123.PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma, A. D., Rizo-Patron, C., Hallstrom, A. P., O’Neill, G. P., et al. (2005). Percent right ventricular pacing predicts outcomes in the DAVID trial. Heart Rhythm, 2, 830–834.PubMedCrossRefGoogle Scholar
  8. 8.
    Moss, A. J., Zareba, W., Hall, W. J., Klein, H., et al. (2002). Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. The New England Journal of Medicine, 346, 877–883.PubMedCrossRefGoogle Scholar
  9. 9.
    Steinberg, J. S., Fischer, A., Wang, P., Schuger, C., Daubert, J., et al. (2005). The clinical implications of cumulative right ventricular pacing in the Multicenter Automatic Defribrillator Trial II. Journal of Cardiovascular Electrophysiology, 16, 359–365.PubMedCrossRefGoogle Scholar
  10. 10.
    Sweeney, M. O., Hellkamp, A. S., Ellenbogen, K. A., Greenspon, A. J., Freedman, R. A., Lee, K. L., et al. (2003). Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation, 107, 2932–2937.PubMedCrossRefGoogle Scholar
  11. 11.
    Myerburg, R. J., Nilsson, K., & Gelband, H. (1972). Physiology of canine intraventricular conduction and endocardial excitation. Circulation Research, 30, 217–243.PubMedGoogle Scholar
  12. 12.
    Scher, A. M., Young, A. C., Malmghen, A. L., & Paton, R. R. (1953). Spread of electrical activity through the wall of the ventricle. Circulation Research, 1, 539–547.PubMedGoogle Scholar
  13. 13.
    Scher, A. M., Young, A. C., Malmgren, A. L., & Erickson, R. V. (1955). Activation of the interventricular septum. Circulation Research, 3, 56–64.PubMedGoogle Scholar
  14. 14.
    Vassollo, J. A., Cassidy, D. M., Marchlinski, F. E., Buxton, A. E., Waxman, H. L., Doherty, J. U., et al. (1984). Endocardial activation of left bundle branch block. Circulation, 69, 914–923.CrossRefGoogle Scholar
  15. 15.
    Rosenbush, S. W., Ruggie, N., Turner, D. A., Von Behren, P. L., Denes, P., Fordham, E. W., et al. (1982). Sequence and timing of ventricular wall motion in patients with bundle branch block. Assessment by radionuclide cineangiography. Circulation, 66, 1113–1119.PubMedCrossRefGoogle Scholar
  16. 16.
    Bank, A. J., & Kelly, A. S. (2006). Tissue Doppler imaging and left ventricular dyssynchrony in heart failure. Journal of Cardiac Failure 12;2:154–162.Google Scholar
  17. 17.
    Bank, A. J., Burns, K. V., & Gage, R. M. (2010). Heart failure and cardiac resynchronization therapy. US Cardiology 7;1:24–32.Google Scholar
  18. 18.
    Yu, C. M., Bax, J. J., & Gorcsan, J., III. (2008). Critical appraisal of methods to assess mechanical dyssynchrony. Current Opinion in Cardiology, 24, 18–28.CrossRefGoogle Scholar
  19. 19.
    Ishikawa, T. (2011). Limitaions and problems of assessment of mechanical dyssynchrony in determining cardiac resynchronization therapy indication: Is assessment of mechanical dyssynchrony necessary in determining CRT indication? (Con). Circulation Journal, 75, 465–471.PubMedCrossRefGoogle Scholar
  20. 20.
    Prinzen, F. W., Hunter, W. C., Wyman, B. T., & McVeigh, E. R. (1999). Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic resonance imaging tagging. Journal of the American College of Cardiology, 33, 1735–1742.PubMedCrossRefGoogle Scholar
  21. 21.
    Prinzen, F. W., & Peschar, M. (2002). Relation between the pacing induced sequence of activation and left ventricular pump function in animals. Pacing and Clinical Electrophysiology, 25(Pt 1), 484–498.PubMedCrossRefGoogle Scholar
  22. 22.
    Prinzen, F. W., Augustijn, C. H., Arts, T., Allessie, M. A., & Reneman, R. S. (1990). Redistribution of myocardial fiber strain and blood flow by asynchronous activation. American Journal of Physiology, 259, H300–H308.PubMedGoogle Scholar
  23. 23.
    Delhaas, T., Arts, T., Prinzen, F. W., & Reneman, R. S. (1994). Regional fibre stress-fibre strain area an estimate of regional blood flow and oxygen demand in the canine heart. The Journal of Physiology, 477, 481–496.PubMedGoogle Scholar
  24. 24.
    Delgado, V., Tops, L. F., Trines, S. A., Zeppenfeld, K., et al. (2009). Acute effects of right ventricular and apical pacing on left ventricular synchrony and mechanics. Circulation: Arrhythmia and Electrophysiology, 2, 135–145.CrossRefGoogle Scholar
  25. 25.
    Liu, W. H., Chen, M. C., Chen, Y. L., Guo, B. F., et al. (2008). Right ventricular apical pacing acutely impairs left ventricular function and induces mechanical dyssynchrony in patients with sick sinus syndrome: A real-time three-dimensional echocardiographic study. Journal of the American Society of Echocardiography, 21(3), 224–229.PubMedCrossRefGoogle Scholar
  26. 26.
    Nahlawi, M., Waligora, M., Spies, S., Bonow, R., et al. (2004). Left ventricular function during and after right ventricular pacing. Journal of the American College of Cardiology, 44, 1883–1888.PubMedCrossRefGoogle Scholar
  27. 27.
    Bank, A. J., Schwartzman, D. S., Burns, K. V., Kaufman, C. L., Adler, S. W., Kelly, A. S., et al. (2010). Intramural dyssynchrony from acute right ventricular apical pacing in human subjects with normal left ventricular function. Journal of Cardiovascular Transaction Research, 3, 321–329.CrossRefGoogle Scholar
  28. 28.
    Fang, F., Chan, J. Y. S., Yip, G. W. K., Xie, J. M., Zhang, Q., Fung, J. W. H., et al. (2010). Prevalence and determinants of left ventricular systolic dyssynchrony in patients with normal ejection fraction received right ventricular apical pacing: A real-time three-dimensional echocardiographic study. European Journal of Echocardiography, 11, 109–118.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, X. H., Chen, H., Siu, C. W., Yiu, K. H., et al. (2008). New-onset heart failure after permanent right ventricular apical pacing in patients with acquired high-grade atrioventricular block and normal left ventricular function. Journal of Cardiovascular Electrophysiology, 19, 136–141.PubMedCrossRefGoogle Scholar
  30. 30.
    Tse, H. F., & Lau, C. P. (1997). Long-term effect of right ventricular pacing on myocardial perfusion and function. Journal of the American College of Cardiology, 29, 744–749.PubMedCrossRefGoogle Scholar
  31. 31.
    Tops, L. F., Suffoletto, M. S., Bleeker, G. B., Boersma, E., van der Wall, E. E., Gorcsan, J., et al. (2007). Speckle-tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing. Journal of the American College of Cardiology, 50, 1180–1188.PubMedCrossRefGoogle Scholar
  32. 32.
    Bank, A. J., Kaufman, C. L., Burns, K. V., Parah, J. S., Johnson, L., Kelly, A. S., et al. (2010). Intramural dyssynchrony and response to cardiac resynchronization therapy in patients with and without previous right ventricular pacing. European Journal of Heart Failure, 12, 1317–1324.PubMedCrossRefGoogle Scholar
  33. 33.
    Ng, A. C. T., Allman, C., Vidaic, J., Tie, H., Hopkins, A. P., & Leung, D. Y. (2009). Long-term impact of right ventricular septal versus apical pacing on left ventricular synchrony and function in patients with second- or third-degree heart block. The American Journal of Cardiology, 103, 1096–1101.PubMedCrossRefGoogle Scholar
  34. 34.
    Burns, K. V., Kaufman, C. L., Kelly, A. S., Parah, J. S., Dengel, D. R., & Bank, A. J. (2011). Torsion and dyssynchrony differences between chronically paced and non-paced heart failure patients. Journal of Cardiac Failure, 17, 495–502.PubMedCrossRefGoogle Scholar
  35. 35.
    Grines, C. L., Bashore, T. M., Boudoulas, H., Olson, S., Shafer, P., & Wooley, C. F. (1989). Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation, 79, 845–853.PubMedCrossRefGoogle Scholar
  36. 36.
    Kindermann, M., Hennen, B., Jung, J., Geisel, J., Bohm, M., & Frohlig, G. (2006). Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction. The Homburg biventricular pacing evaluation (HOBIPACE). Journal of the American College of Cardiology, 47, 1927–1937.PubMedCrossRefGoogle Scholar
  37. 37.
    Doshi, R. N., Daoud, E. G., Fellows, C., Turk, K., Duran, A., Hamdan, M. H., et al. (2005). Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (The PAVE Study). Journal of Cardiovascular Electrophysiology, 16, 1160–1165.PubMedCrossRefGoogle Scholar
  38. 38.
    Leclercq, C., Walker, S., Linde, C., Clementy, J., et al. (2002). Comparative effects of permanent biventricular and right-univentricular pacing in heart failure patients with chronic atrial fibrillation. European Heart Journal, 23, 1780–1787.PubMedCrossRefGoogle Scholar
  39. 39.
    Brignole, M., Gammage, M., Puggioni, E., Alboni, P., et al. (2005). Comparative assessment of right, left, and biventricular pacing in patients with permanent atrial fibrillation. European Heart Journal, 26, 712–722.PubMedCrossRefGoogle Scholar
  40. 40.
    Yu, C. M., Chan, J. Y. S., Zhang, Q., Omar, R., et al. (2009). Biventricular pacing in patients with bradycardia and normal ejection fraction. The New England Journal of Medicine, 361, 2123–2134.PubMedCrossRefGoogle Scholar
  41. 41.
    Chan, J. Y. S., Fang, F., Zhang, Q., Fung, J. W. H., Razali, O., et al. (2011). Biventricular pacing is superior to right ventricular pacing in bradycardia patients with preserved systolic function: 2-year results of the PACE trial. European Heart Journal, 32, 2533–2540.PubMedCrossRefGoogle Scholar
  42. 42.
    Brignole, M., Botto, G., Mont, L., Iacopino, S., et al. (2011). Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: A randomized trial. European Heart Journal Advance Access May 23, 2011.Google Scholar
  43. 43.
    Stockburger, M., Gomez-Doblas, J. J., Lamas, G., Alzueta, J., et al. (2011). Preventing ventricular dysfunction in pacemaker patients without advanced heart failure: Results from a multicentre international randomized trial (PREVENT-HF). European Journal of Heart Failure, 13, 633–641.PubMedCrossRefGoogle Scholar
  44. 44.
    Bradley, D. J., & Shen, W. K. (2007). Atrioventricular junction ablation combined with either right ventricular pacing or cardiac resynchronization therapy for atrial fibrillation: The need for large-scale randomized trials. Heart Rhythm, 4, 224–232.PubMedCrossRefGoogle Scholar
  45. 45.
    Pastore, G., Noventa, F., Piovesana, P., Cazzin, R., et al. (2008). Left ventricular dyssynchrony resulting from right ventricular apical pacing: Relevance of baseline assessment. Pacing and Clinical Electrophysiology, 31, 1456–1462.PubMedCrossRefGoogle Scholar
  46. 46.
    Olshansky, B., Day, J. D., Moore, S., Gering, L., Rosenbaum, M., McGuire, M., et al. (2007). Is dual-chamber programming inferior to single-chamber programming in an implantable cardioverter-defibrillator? Results of the INTRINSIC RV (Inhibition of unnecessary RV pacing with AVSH in ICDs) study. Circulation, 115, 9–16.PubMedCrossRefGoogle Scholar
  47. 47.
    Olshansky, B., Day, J. D., Lerew, D. R., Brown, S., & Stolen, K. Q. (2007). Eliminating right ventricular pacing may not be the best for patients requiring implantable cardioverter–defribrillators. Heart Rhythm, 4, 886–891.PubMedCrossRefGoogle Scholar
  48. 48.
    Yamano, T., Kubo, T., Takarada, S., Ishibashi, K., et al. (2010). Advantage of right ventricular outflow tract pacing on cardiac function and coronary circulation in comparison with right ventricular apex pacing. Journal of the American Society of Echocardiography, 23, 1177–1182.PubMedCrossRefGoogle Scholar
  49. 49.
    Leong, D. P., Mitchell, A. M., Salna, I., Brooks, A. G., et al. (2010). Long-term mechanical consequences of permanent right ventricular pacing: Effect of pacing site. Journal of Cardiovascular Electrophysiology, 21, 1120–1126.PubMedCrossRefGoogle Scholar
  50. 50.
    Tse, H. F., Yu, C., Wong, K. K., Tsang, V., Leung, Y. L., Ho, W. Y., et al. (2002). Functional abnormalities in patients with permanent right ventricular pacing. Journal of the American College of Cardiology, 40, 1451–1458.PubMedCrossRefGoogle Scholar
  51. 51.
    Victor, F., Leclercq, C., Mabo, P., Pavin, D., et al. (1999). Optimal right ventricular pacing site in chronically implanted patients. Journal of the American College of Cardiology, 33, 311–316.PubMedCrossRefGoogle Scholar
  52. 52.
    Stambler, B. S., Ellenbogen, K. A., Zhang, X., Porter, T. R., et al. (2003). Right ventricular outflow versus apical pacing in pacemaker patients with congestive heart failure and atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14, 1180–1186.PubMedCrossRefGoogle Scholar
  53. 53.
    Dabrowska-Kugacka, A., Lewicka-Nowak, E., Tybura, S., Wilczek, R., et al. (2009). Survival analysis in patients with preserved left ventricular function and standard indications for permanent cardiac pacing randomized to right ventricular apical or septal outflow tract pacing. Circulation Journal, 73, 1812–1819.PubMedCrossRefGoogle Scholar
  54. 54.
    Gong, X., Su, Y., Pan, W., Cui, J., Liu, S., & Shu, X. (2009). Is right ventricular outflow tract pacing superior to right ventricular apex pacing in patients with normal cardiac function? Clinical Cardiology, 32, 695–699.PubMedCrossRefGoogle Scholar
  55. 55.
    Schwaab, B., Frohlig, G., Alexander, C., Kindermann, M., Hellwig, N., Schwerdt, H., et al. (1999). Influence of right ventricular stimulation site on left ventricular function in atrial synchronous ventricular pacing. Journal of the American College of Cardiology, 33, 317–323.PubMedCrossRefGoogle Scholar
  56. 56.
    Inoue, K., Okayama, H., Nishimura, K., Ogimoto, A., et al. (2010). Right ventricular pacing from the septum avoids the acute exacerbation in left ventricular dyssynchrony and torsional behavior seen with pacing from the apex. Journal of the American Society of Echocardiography, 23, 195–200.PubMedCrossRefGoogle Scholar
  57. 57.
    Inoue, K., Okayama, H., Nishimura, K., Saito, M., et al. (2011). Right ventricular septal pacing preserves global left ventricular longitudinal function in comparison with apical pacing. Circulation Journal, 75(7), 1609–1615.PubMedCrossRefGoogle Scholar
  58. 58.
    Cano, O., Osca, J., Sancho-Tello, M. J., Sanchez, J. M., et al. (2010). Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing. The American Journal of Cardiology, 105, 1426–1432.PubMedCrossRefGoogle Scholar
  59. 59.
    Cho, G. Y., Kim, M. J., Park, J. H., Kim, H. S., Youn, H. J., Kim, K. H., et al. (2011). Comparison of ventricular dyssynchrony according to the position of right ventricular pacing electrode: A multi-center prospective echocardiographic study. Journal of Cardiovascular Ultrasound, 19, 15–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Peschar, M., de Swart, H., Michels, K. J., Reneman, R. S., & Prinzen, F. W. (2003). Left ventricular septal and apex pacing for optimal pump function in canine hearts. Journal of the American College of Cardiology, 41, 1218–1226.PubMedCrossRefGoogle Scholar
  61. 61.
    Kronborg, M. B., Mortensen, P. T., Gerdes, J. C., Jensen, H. K., & Nielsen, J. C. (2011). His and para-His pacing in AV block: Feasibility and electrocardiographic findings. Journal of Interventional Cardiac Electrophysiology, 31(3), 255–262.PubMedCrossRefGoogle Scholar
  62. 62.
    Catanzariti, D., Maines, M., Cemin, C., Broso, G., Marotta, T., & Vergara, G. (2006). Permanent direct his bundle pacing does not induce ventricular dyssynchrony unlike conventional right ventricular apical pacing. An intrapatient acute comparison study. Journal of Interventional Cardiac Electrophysiology, 16, 81–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Zanon, F., Bacchiega, E., Rampin, L., Aggio, S., et al. (2008). Direct his bundle pacing preserves coronary perfusion compared with right ventricular apical pacing: A prospective, cross-over mid-term study. Europace, 10, 580–587.PubMedCrossRefGoogle Scholar
  64. 64.
    Webb, M. G. (2011). Evaluation of a system to screen for heart failure associated with pacemaker-induced dyssynchrony. Abstract, Heart & Lung, 40, 372.CrossRefGoogle Scholar
  65. 65.
    Foley, P. W. X., Muhyaldeen, S. A., Chalil, S., Smith, R. E. A., Sanderson, J. E., & Leyva, F. (2009). Long-term effects of upgrading from right ventricular pacing to cardiac resynchronization therapy in patients with heart failure. Europace, 11, 495–501.PubMedCrossRefGoogle Scholar
  66. 66.
    Witte, K. K. A., Pipes, R. R., Nanthakumar, K., & Parker, J. D. (2006). Biventricular pacemaker upgrade in previously paced heart failure patients—Improvements in ventricular dyssynchrony. Journal of Cardiac Failure, 12, 199–204.PubMedCrossRefGoogle Scholar
  67. 67.
    Tanaka, H., Hara, H., Adelstein, E. C., Schwartzman, D., Saba, S., & Gorcsan, J. (2010). Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. Journal of the American College of Cardiology: Cardiovascular Imaging, 3, 461–471.Google Scholar
  68. 68.
    Eldadah, Z. A., Rosen, B., Hay, I., Edvardsen, T., et al. (2006). The benefit of upgrading chronically right ventricle-paced heart failure patients to resynchronization therapy demonstrated by strain rate imaging. Heart Rhythm, 3, 435–442.PubMedCrossRefGoogle Scholar
  69. 69.
    Vatankulu, M. A., Goktekin, O., Kaya, M. G., Ayhan, S., Kucukdurmaz, Z., Sutton, R., et al. (2009). Effect of long-term resynchronization therapy on left ventricular remodeling in pacemaker patients upgraded to biventricular devices. The American Journal of Cardiology, 103, 1280–1284.PubMedCrossRefGoogle Scholar
  70. 70.
    Leclerq, C., Cazeau, S., Lellouche, D., Fossati, F., et al. (2007). Upgrading from single chamber right ventricular to biventricular pacing in permanently paced patients with worsening heart failure. Pacing and Clinical Electrophysiology, 30, S23–S30.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alan J. Bank
    • 1
    • 2
    Email author
  • Ryan M. Gage
    • 1
  • Kevin V. Burns
    • 1
  1. 1.United Heart and Vascular ClinicSt. PaulUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations