Journal of Cardiovascular Translational Research

, Volume 4, Issue 6, pp 748–756 | Cite as

Filamin-A-Related Myxomatous Mitral Valve Dystrophy: Genetic, Echocardiographic and Functional Aspects

  • Aurélie Lardeux
  • Florence Kyndt
  • Simon Lecointe
  • Hervé Le Marec
  • Jean Merot
  • Jean-Jacques Schott
  • Thierry Le Tourneau
  • Vincent Probst
Article

Abstract

Myxomatous dystrophy of the cardiac valves is a heterogeneous group of disorders, including syndromic diseases such as Marfan syndrome and isolated valvular diseases. Mitral valve prolapse, the most common form of this disease, is presumed to affect approximately 2% to 3% of the population and remains one of the most common causes of valvular surgery. During the past years, important effort has been made to better understand the pathophysiological basis of mitral valve prolapse. Autosomal-dominant transmission is the usual inheritance with reduced penetrance and variable expressivity. Three loci have been mapped to chromosomes 16p11-p12, 11p15.4 and 13q31-32, but the underlying genetic defects are not currently known. An X-linked recessive form has been originally described by Monteleone and Fagan in 1969. Starting from one large French family and three smaller other families in which MVP was transmitted with an X-linked pattern, we have been able to identify three filamin A mutations p.Gly288Arg and p.Val711Asp and a 1,944-bp genomic deletion coding for exons 16 to 19. In this review, we describe the genetic, echocardiographic and functional aspects of the filamin-A-related myxomatous mitral valve dystrophy.

Keywords

Filamin A Mitral valve prolapse Genetic Pathophysiology 

References

  1. 1.
    Devereux, R. B., Brown, W. T., Kramer-Fox, R., & Sachs, I. (1982). Inheritance of mitral valve prolapse: effect of age and sex on gene expression. Annals of Internal Medicine, 97, 826–832.PubMedGoogle Scholar
  2. 2.
    Bowles, N. E., Bowles, K. R., & Towbin, J. A. (2000). The "final common pathway" hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy. Herz, 25, 168–175.PubMedCrossRefGoogle Scholar
  3. 3.
    Levy, D., & Savage, D. (1987). Prevalence and clinical features of mitral valve prolapse. American Heart Journal, 113, 1281–1290.PubMedCrossRefGoogle Scholar
  4. 4.
    Freed, L. A., Levy, D., Levine, R. A., et al. (1999). Prevalence and clinical outcome of mitral-valve prolapse. The New England Journal of Medicine, 341, 1–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Waller, B. F., Morrow, A. G., Maron, B. J., et al. (1982). Etiology of clinically isolated, severe, chronic, pure mitral regurgitation: analysis of 97 patients over 30 years of age having mitral valve replacement. American Heart Journal, 104, 276–288.PubMedCrossRefGoogle Scholar
  6. 6.
    Towbin, J. A. (1999). Toward an understanding of the cause of mitral valve prolapse. American Journal of Human Genetics, 65, 1238–1241.PubMedCrossRefGoogle Scholar
  7. 7.
    Levine, R. A., Handschumacher, M. D., Sanfilippo, A. J., et al. (1989). Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation, 80, 589–598.PubMedCrossRefGoogle Scholar
  8. 8.
    Ng, C. M., Cheng, A., Myers, L. A., et al. (2004). TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. The Journal of Clinical Investigation, 114, 1586–1592.PubMedGoogle Scholar
  9. 9.
    Keane, M. G., & Pyeritz, R. E. (2008). Medical management of Marfan syndrome. Circulation, 117, 2802–2813.PubMedCrossRefGoogle Scholar
  10. 10.
    Singh, K. K., Rommel, K., Mishra, A., et al. (2006). TGFBR1 and TGFBR2 mutations in patients with features of Marfan syndrome and Loeys–Dietz syndrome. Human Mutation, 27, 770–777.PubMedCrossRefGoogle Scholar
  11. 11.
    McDonnell, N. B., Gorman, B. L., Mandel, K. W., et al. (2006). Echocardiographic findings in classical and hypermobile Ehlers–Danlos syndromes. American Journal of Medical Genetics. Part A, 140, 129–136.PubMedCrossRefGoogle Scholar
  12. 12.
    Malfait, F., & De Paepe, A. (2005). Molecular genetics in classic Ehlers–Danlos syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 139C, 17–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Hortop, J., Tsipouras, P., Hanley, J. A., Maron, B. J., & Shapiro, J. R. (1986). Cardiovascular involvement in osteogenesis imperfecta. Circulation, 73, 54–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Pyeritz, R. E., Weiss, J. L., Renie, W. A., & Fine, S. L. (1982). Pseudoxanthoma elasticum and mitral-valve prolapse. The New England Journal of Medicine, 307, 1451–1452.PubMedCrossRefGoogle Scholar
  15. 15.
    Ringpfeil, F., Lebwohl, M. G., Christiano, A. M., & Uitto, J. (2000). Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 6001–6006.PubMedCrossRefGoogle Scholar
  16. 16.
    Plomp, A. S., Florijn, R. J., Ten Brink, J., et al. (2008). ABCC6 mutations in pseudoxanthoma elasticum: an update including eight novel ones. Molecular Vision, 14, 118–124.PubMedGoogle Scholar
  17. 17.
    Henney, A. M., Tsipouras, P., Schwartz, R. C., Child, A. H., Devereux, R. B., & Leech, G. J. (1989). Genetic evidence that mutations in the COL1A1, COL1A2, COL3A1, or COL5A2 collagen genes are not responsible for mitral valve prolapse. British Heart Journal, 61, 292–299.PubMedCrossRefGoogle Scholar
  18. 18.
    Andrabi, S., Bekheirnia, M. R., Robbins-Furman, P., Lewis, R. A., Prior, T. W., & Potocki, L. (2011). SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, and mitral valve dysfunction. American Journal of Medical Genetics. Part A, 155, 1165–1169.CrossRefGoogle Scholar
  19. 19.
    Cheitlin, M. D., Alpert, J. S., Armstrong, W. F., et al. (1997). ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation, 95, 1686–1744.PubMedGoogle Scholar
  20. 20.
    Disse, S., Abergel, E., Berrebi, A., et al. (1999). Mapping of a first locus for autosomal dominant myxomatous mitral-valve prolapse to chromosome 16p11.2-p12.1. American Journal of Human Genetics, 65, 1242–1251.PubMedCrossRefGoogle Scholar
  21. 21.
    Freed, L. A., Acierno, J. S., Jr., Dai, D., et al. (2003). A locus for autosomal dominant mitral valve prolapse on chromosome 11p15.4. American Journal of Human Genetics, 72, 1551–1559.PubMedCrossRefGoogle Scholar
  22. 22.
    Nesta, F., Leyne, M., Yosefy, C., et al. (2005). New locus for autosomal dominant mitral valve prolapse on chromosome 13: clinical insights from genetic studies. Circulation, 112, 2022–2030.PubMedCrossRefGoogle Scholar
  23. 23.
    Monteleone, P. L., & Fagan, L. F. (1969). Possible X-linked congenital heart disease. Circulation, 39, 611–614.PubMedGoogle Scholar
  24. 24.
    Newbury-Ecob, R. A., Zuccollo, J. M., Rutter, N., & Young, I. D. (1993). Sex linked valvular dysplasia. Journal of Medical Genetics, 30, 873–874.PubMedCrossRefGoogle Scholar
  25. 25.
    Kyndt, F., Schott, J. J., Trochu, J. N., et al. (1998). Mapping of X-linked myxomatous valvular dystrophy to chromosome Xq28. American Journal of Human Genetics, 62, 627–632.PubMedCrossRefGoogle Scholar
  26. 26.
    Nakamura, F., Stossel, T. P., & Hartwig, J. H. (2011). The filamins: organizers of cell structure and function. Cell Adhesion & Migration, 5, 160–169.CrossRefGoogle Scholar
  27. 27.
    Kyndt, F., Gueffet, J. P., Probst, V., et al. (2007). Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation, 115, 40–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Trochu, J. N., Kyndt, F., Schott, J. J., et al. (2000). Clinical characteristics of a familial inherited myxomatous valvular dystrophy mapped to Xq28. Journal of the American College of Cardiology, 35, 1890–1897.PubMedCrossRefGoogle Scholar
  29. 29.
    Robertson, S. P., Twigg, S. R., Sutherland-Smith, A. J., et al. (2003). Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nature Genetics, 33, 487–491.PubMedCrossRefGoogle Scholar
  30. 30.
    Sharp, A., Robinson, D., & Jacobs, P. (2000). Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Human Genetics, 107, 343–349.PubMedCrossRefGoogle Scholar
  31. 31.
    Orstavik, K. H. (2009). X chromosome inactivation in clinical practice. Human Genetics, 126, 363–373.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou, A. X., Hartwig, J. H., & Akyurek, L. M. (2010). Filamins in cell signaling, transcription and organ development. Trends in Cell Biology, 20, 113–123.PubMedCrossRefGoogle Scholar
  33. 33.
    Stossel, T. P., Condeelis, J., Cooley, L., et al. (2001). Filamins as integrators of cell mechanics and signalling. Nature Reviews. Molecular Cell Biology, 2, 138–145.PubMedCrossRefGoogle Scholar
  34. 34.
    Baldassarre, M., Razinia, Z., Burande, C. F., Lamsoul, I., Lutz, P. G., & Calderwood, D. A. (2009). Filamins regulate cell spreading and initiation of cell migration. PloS One, 4, e7830.PubMedCrossRefGoogle Scholar
  35. 35.
    Parrini, E., Mei, D., Wright, M., Dorn, T., & Guerrini, R. (2004). Mosaic mutations of the FLN1 gene cause a mild phenotype in patients with periventricular heterotopia. Neurogenetics, 5, 191–196.PubMedCrossRefGoogle Scholar
  36. 36.
    Jefferies, J. L., Taylor, M. D., Rossano, J., Belmont, J. W., & Craigen, W. J. (2010). Novel cardiac findings in periventricular nodular heterotopia. American Journal of Medical Genetics. Part A, 152A, 165–168.PubMedCrossRefGoogle Scholar
  37. 37.
    Sheen, V. L., Dixon, P. H., Fox, J. W., et al. (2001). Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Human Molecular Genetics, 10, 1775–1783.PubMedCrossRefGoogle Scholar
  38. 38.
    Feng, Y., & Walsh, C. A. (2004). The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nature Cell Biology, 6, 1034–1038.PubMedCrossRefGoogle Scholar
  39. 39.
    Feng, Y., Chen, M. H., Moskowitz, I. P., et al. (2006). Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 19836–19841.PubMedCrossRefGoogle Scholar
  40. 40.
    Rabkin, E., Aikawa, M., Stone, J. R., Fukumoto, Y., Libby, P., & Schoen, F. J. (2001). Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation, 104, 2525–2532.PubMedCrossRefGoogle Scholar
  41. 41.
    Markwald, R. R., Norris, R. A., Moreno-Rodriguez, R., & Levine, R. A. (2010). Developmental basis of adult cardiovascular diseases: valvular heart diseases. Annals of the New York Academy of Sciences, 1188, 177–183.PubMedCrossRefGoogle Scholar
  42. 42.
    Norris, R. A., Moreno-Rodriguez, R., Wessels, A., et al. (2010). Expression of the familial cardiac valvular dystrophy gene, filamin-A, during heart morphogenesis. Developmental Dynamics, 239, 2118–2127.PubMedCrossRefGoogle Scholar
  43. 43.
    Chiu, Y. N., Norris, R. A., Mahler, G., Recknagel, A., & Butcher, J. T. (2010). Transforming growth factor beta, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: relevance for heart valve tissue engineering. Tissue Engineering. Part A, 16, 3375–3383.PubMedCrossRefGoogle Scholar
  44. 44.
    Armstrong, E. J., & Bischoff, J. (2004). Heart valve development: endothelial cell signaling and differentiation. Circulation Research, 95, 459–470.PubMedCrossRefGoogle Scholar
  45. 45.
    Sasaki, A., Masuda, Y., Ohta, Y., Ikeda, K., & Watanabe, K. (2001). Filamin associates with Smads and regulates transforming growth factor-beta signaling. The Journal of Biological Chemistry, 276, 17871–17877.PubMedCrossRefGoogle Scholar
  46. 46.
    Cushing, M. C., Liao, J. T., & Anseth, K. S. (2005). Activation of valvular interstitial cells is mediated by transforming growth factor-beta1 interactions with matrix molecules. Matrix Biology, 24, 428–437.PubMedCrossRefGoogle Scholar
  47. 47.
    Khan, R., & Sheppard, R. (2006). Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology, 118, 10–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Griffiths, G. S., Grundl, M., Allen Iii, J. S., & Matter, M. L. (2010). R-Ras interacts with filamin A to maintain endothelial barrier function. Journal of Cell Physiology, 226(9), 2287–2296.CrossRefGoogle Scholar
  49. 49.
    Gawecka, J. E., Griffiths, G. S., Ek-Rylander, B., Ramos, J. W., & Matter, M. L. (2010). R-Ras regulates migration through an interaction with filamin A in melanoma cells. PloS One, 5, e11269.PubMedCrossRefGoogle Scholar
  50. 50.
    Falet, H., Pollitt, A. Y., Begonja, A. J., et al. (2010). A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. The Journal of Experimental Medicine, 207, 1967–1979.PubMedCrossRefGoogle Scholar
  51. 51.
    Pavanetto, M., Zarpellon, A., Borgo, C., Donella-Deana, A., & Deana, R. (2011). Regulation of serotonin transport in human platelets by tyrosine kinase Syk. Cellular Physiology and Biochemistry, 27, 139–148.PubMedGoogle Scholar
  52. 52.
    Mekontso-Dessap, A., Brouri, F., Pascal, O., et al. (2006). Deficiency of the 5-hydroxytryptamine transporter gene leads to cardiac fibrosis and valvulopathy in mice. Circulation, 113, 81–89.PubMedCrossRefGoogle Scholar
  53. 53.
    Oyama, M. A., & Levy, R. J. (2010). Insights into serotonin signaling mechanisms associated with canine degenerative mitral valve disease. Journal of Veterinary Internal Medicine, 24, 27–36.PubMedCrossRefGoogle Scholar
  54. 54.
    Donnelly, K. B. (2008). Cardiac valvular pathology: comparative pathology and animal models of acquired cardiac valvular diseases. Toxicologic Pathology, 36, 204–217.PubMedCrossRefGoogle Scholar
  55. 55.
    Rothman, R. B., Baumann, M. H., Savage, J. E., et al. (2000). Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation, 102, 2836–2841.PubMedGoogle Scholar
  56. 56.
    Rothman, R. B., & Baumann, M. H. (2009). Serotonergic drugs and valvular heart disease. Expert Opinion on Drug Safety, 8, 317–329.PubMedCrossRefGoogle Scholar
  57. 57.
    Xu, J., Jian, B., Chu, R., et al. (2002). Serotonin mechanisms in heart valve disease II: the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. The American Journal of Pathology, 161, 2209–2218.PubMedCrossRefGoogle Scholar
  58. 58.
    Eriksson, J. E., Dechat, T., Grin, B., et al. (2009). Introducing intermediate filaments: from discovery to disease. The Journal of Clinical Investigation, 119, 1763–1771.PubMedCrossRefGoogle Scholar
  59. 59.
    Eckes, B., Dogic, D., Colucci-Guyon, E., et al. (1998). Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. Journal of Cell Science, 111(Pt 13), 1897–1907.PubMedGoogle Scholar
  60. 60.
    Kim, H., Nakamura, F., Lee, W., Hong, C., Perez-Sala, D., & McCulloch, C. A. (2010). Regulation of cell adhesion to collagen via beta1 integrins is dependent on interactions of filamin A with vimentin and protein kinase C epsilon. Experimental Cell Research, 316, 1829–1844.PubMedCrossRefGoogle Scholar
  61. 61.
    Kim, H., Nakamura, F., Lee, W., Shifrin, Y., Arora, P., & McCulloch, C. A. (2010). Filamin A is required for vimentin-mediated cell adhesion and spreading. American Journal of Physiology. Cell Physiology, 298, C221–C236.PubMedCrossRefGoogle Scholar
  62. 62.
    Ivaska, J., Whelan, R. D., Watson, R., & Parker, P. J. (2002). PKC epsilon controls the traffic of beta1 integrins in motile cells. EMBO Journal, 21, 3608–3619.PubMedCrossRefGoogle Scholar
  63. 63.
    Wipff, P. J., Rifkin, D. B., Meister, J. J., & Hinz, B. (2007). Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. The Journal of Cell Biology, 179, 1311–1323.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Aurélie Lardeux
    • 1
  • Florence Kyndt
    • 1
  • Simon Lecointe
    • 1
  • Hervé Le Marec
    • 1
  • Jean Merot
    • 1
  • Jean-Jacques Schott
    • 1
  • Thierry Le Tourneau
    • 1
  • Vincent Probst
    • 1
    • 2
  1. 1.l’institut du thoraxClinique Cardiologique and InsermNantesFrance
  2. 2.Service de cardiologie du CHU de NantesNantes Cedex 01France

Personalised recommendations