Strategies for Tissue Engineering Cardiac Constructs to Affect Functional Repair Following Myocardial Infarction

Article

Abstract

Tissue-engineered cardiac constructs are a high potential therapy for treating myocardial infarction. These therapies have the ability to regenerate or recreate functional myocardium following the infarction, restoring some of the lost function of the heart and thereby preventing congestive heart failure. Three key factors to consider when developing engineered myocardial tissue include the cell source, the choice of scaffold, and the use of biomimetic culture conditions. This review details the various biomaterials and scaffold types that have been used to generate engineered myocardial tissues as well as a number of different methods used for the fabrication and culture of these constructs. Specific bioreactor design considerations for creating myocardial tissue equivalents in vitro, such as oxygen and nutrient delivery as well as physical stimulation, are also discussed. Lastly, a brief overview of some of the in vivo studies that have been conducted to date and their assessment of the functional benefit in repairing the injured heart with engineered myocardial tissue is provided.

Keywords

Tissue engineering Myocardial infarction Biomaterials Bioreactor Heart failure Polymer scaffolds 

Abbreviations

MI

Myocardial infarction

ECM

Extracellular matrix

FDA

US Food and Drug Administration

SIS

Small intestinal submucosa

UBM

Urinary bladder matrix

GAGs

Glycosaminoglycans

PLGA

Poly(lactic-co-glycolic acid)

PNIPAAm

Poly(N-isopropylacrylamide)

PTMCLA

Poly(trimethylene carbonate-co-lactide)

VEGF

Vascular endothelial growth factor

PEG

Polyethylene glycol

FAK

Focal adhesion Kinase

RhoA

Ras homolog gene family, member A

AVL

Arteriovenous blood vessel loop

FS

Fractional shortening

LVEF

Left ventricular ejection fraction

EHTs

Engineered heart tissue

LVEDD

Left ventricular end-diastolic dimension

LVEDV

Left ventricular end-diastolic volume

bFGF

Basic fibroblast growth factor

CPCs

Cardiac progenitor cells

IGF-1

Insulin-like growth factor 1

References

  1. 1.
    Minino, A. M., Xu, J., & Kochanek, K. D. (2008). Deaths: Preliminary data for 2008. National Vital Statistics Reports, vol. 59, p. 31.Google Scholar
  2. 2.
    World Health Organization (2008). The top ten causes of death, 2008.Google Scholar
  3. 3.
    Beltrami, A. P., Urbanek, K., Kajstrua, J., Yan, S.-M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344(23), 1750–1757.PubMedCrossRefGoogle Scholar
  4. 4.
    Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81(4), 1161–1172.PubMedCrossRefGoogle Scholar
  5. 5.
    Gaudron, P., Eilles, C., Kugler, I., & Ertl, G. (1993). Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation, 87(3), 755–763.PubMedGoogle Scholar
  6. 6.
    Segers, V. F. M., & Lee, R. T. (2010). Protein therapeutics for cardiac regeneration after myocardial infarction. Journal of Cardiovascular Translational Research, 3(5), 469–477.PubMedCrossRefGoogle Scholar
  7. 7.
    Boyle, A. (2009). Current status of cardiac transplantation and mechanical circulatory support. Current Heart Failure Reports, 6(1), 28–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeevanandam, V., Furukawa, S., Prendergast, T. W., Todd, B. A., Eisen, H. J., & McClurken, J. B. (1996). Standard criteria for an acceptable donor heart are restricting heart transplantation. The Annals of Thoracic Surgery, 62(5), 1268–1275.PubMedCrossRefGoogle Scholar
  9. 9.
    Lindenfeld, J., Miller, G. G., Shakar, S. F., Zolty, R., Lowes, B. D., Wolfel, E. E., et al. (2004). Drug therapy in the heart transplant recipient: Part I: Cardiac rejection and immunosuppressive drugs. Circulation, 110(24), 3734–3740.PubMedCrossRefGoogle Scholar
  10. 10.
    Laflamme, M. A., Zbinden, S., Epstein, S. E., & Murry, C. E. (2007). Cell-based therapy for myocardial ischemia and infarction: Pathophysiological mechanisms. Annual Review of Pathology, 2, 307–339.PubMedCrossRefGoogle Scholar
  11. 11.
    Beitnes, J., Hopp, E., Lunde, K., Solheim, S., Arnesen, H., Brinchmann, J., et al. (2009). Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: The ASTAMI randomised, controlled study. Heart, 95(24), 1983–1989.PubMedCrossRefGoogle Scholar
  12. 12.
    Schächinger, V., Assmus, B., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., et al. (2009). Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: Insights from the Reinfusion of Enriched Progenitor Cells and Infarct Remodelling in Acute Myocardial Infarction (REPAIR-AMI) trial. European Journal of Heart Failure, 11(10), 973–979.PubMedCrossRefGoogle Scholar
  13. 13.
    D’Alessandro, D. A., & Michler, R. E. (2010). Current and future status of stem cell therapy in heart failure. Curr Treat Options Cardiovasc Med, 12(6), 614–627.PubMedCrossRefGoogle Scholar
  14. 14.
    Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-elevation Infarct Regeneration) trial. Circulation, 113(10), 1287–1294.PubMedCrossRefGoogle Scholar
  15. 15.
    Terrovitis, J. V., Smith, R. R., & Marbán, E. (2010). Assessment and optimization of cell engraftment after transplantation into the heart. Circulation Research, 106(3), 479–494.PubMedCrossRefGoogle Scholar
  16. 16.
    Hattori, F., & Fukuda, K. (2010). Strategies for ensuring that regenerative cardiomyocytes function properly and in cooperation with the host myocardium. Experimental & Molecular Medicine, 42(3), 155.CrossRefGoogle Scholar
  17. 17.
    Choi, Y. S., Dusting, G. J., Stubbs, S., Arunothayaraj, S., Han, X. L., Collas, P., et al. (2010). Differentiation of human adipose-derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 14(4), 878–889.PubMedCrossRefGoogle Scholar
  18. 18.
    Coppen, S. R., Fukushima, S., Shintani, Y., Takahashi, K., Varela-Carver, A., Salem, H., et al. (2008). A factor underlying late-phase arrhythmogenicity after cell therapy to the heart: Global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation. Circulation, 118(14 Suppl), S138–S144.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, J., Ding, L., Zhao, Y., Sun, W., Chen, B., Lin, H., et al. (2009). Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation, 119(13), 1776–1784.PubMedCrossRefGoogle Scholar
  20. 20.
    Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409.PubMedCrossRefGoogle Scholar
  21. 21.
    Padin-Iruegas, M. E., Misao, Y., Davis, M. E., Segers, V. F. M., Esposito, G., Tokunou, T., et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120(10), 876–887.PubMedCrossRefGoogle Scholar
  22. 22.
    Kreutziger, K. L., & Murry, C. E. (2011). Engineered human cardiac tissue. Pediatric Cardiology, 32(3), 334–341.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinez, E. C., & Kofidis, T. (2009). Myocardial tissue engineering: The quest for the ideal myocardial substitute. Expert Review of Cardiovascular Therapy, 7(8), 921–928.PubMedCrossRefGoogle Scholar
  24. 24.
    St. John Sutton, M. G., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101, 2981–2988.Google Scholar
  25. 25.
    Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117(11), 1388–1396.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Blenes, S. B., Li, A. W., Chen, R., Arora, R. C., & Horackova, M. (2010). Engraftment is optimal when myoblasts are transplanted early: The role of hepatocyte growth factor. The Annals of Thoracic Surgery, 89(3), 829–835.PubMedCrossRefGoogle Scholar
  27. 27.
    Hu, X., Wang, J., Chen, J., Luo, R., He, A., Xie, X., et al. (2007). Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. European Journal of Cardio-Thoracic Surgery, 31(3), 438–443.PubMedCrossRefGoogle Scholar
  28. 28.
    Sakamoto, T., Kojima, S., Ogawa, H., Shimomura, H., Kimura, K., Ogata, Y., et al. (2006). Effects of early statin treatment on symptomatic heart failure and ischemic events after acute myocardial infarction in Japanese. The American Journal of Cardiology, 97(8), 1165–1171.PubMedCrossRefGoogle Scholar
  29. 29.
    Martin, I., Wendt, D., & Heberer, M. (2004). The role of bioreactors in tissue engineering. Trends in Biotechnology, 22(2), 80–86.PubMedCrossRefGoogle Scholar
  30. 30.
    Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187.PubMedCrossRefGoogle Scholar
  31. 31.
    Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: A review. Journal of Tissue Engineering and Regenerative Medicine, 1, 327–342.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsushita, T., Oyamada, M., Fujimoto, K., Yasuda, Y., Masuda, S., Wada, Y., et al. (1999). Remodeling of cell–cell and cell–extracellular matrix interactions at the border zone of rat myocardial infarcts. Circulation Research, 85(11), 1046–1055.PubMedGoogle Scholar
  33. 33.
    Lokmic, Z., Stillaert, F., Morrison, W. A., Thompson, E. W., & Mitchell, G. M. (2007). An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. The FASEB Journal, 21(2), 511–522.PubMedCrossRefGoogle Scholar
  34. 34.
    Tee, R., Lokmic, Z., Morrison, W. A., & Dilley, R. J. (2010). Strategies in cardiac tissue engineering. ANZ Journal of Surgery, 80(10), 683–693.PubMedCrossRefGoogle Scholar
  35. 35.
    Zimmermann, W.-H. (2001). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230.CrossRefGoogle Scholar
  36. 36.
    Zimmermann, W.-H., Melnychenko, I., Wasmeier, G., Didié, M., Naito, H., Nixdorff, U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12(4), 452–458.PubMedCrossRefGoogle Scholar
  37. 37.
    Black, L. D., Meyers, J. D., Weinbaum, J. S., Shvelidze, Y. A., & Tranquillo, R. T. (2009). Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Engineering. Part A, 15(10), 3099–3108.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang, C.-C., Liao, C.-K., Yang, M.-J., Chen, C.-H., Hwang, S.-M., Hung, Y.-W., et al. (2010). A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch. Biomaterials, 31(24), 6218–6227.PubMedCrossRefGoogle Scholar
  39. 39.
    Wei, H.-J., Chen, C.-H., Lee, W.-Y., Chiu, I., Hwang, S.-M., Lin, W.-W., et al. (2008). Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials, 29(26), 3547–3556.PubMedCrossRefGoogle Scholar
  40. 40.
    Colazzo, F., Sarathchandra, P., Smolenski, R. T., Chester, A. H., Tseng, Y.-T., Czernuszka, J. T., et al. (2011). Extracellular matrix production by adipose-derived stem cells: Implications for heart valve tissue engineering. Biomaterials, 32(1), 119–127.PubMedCrossRefGoogle Scholar
  41. 41.
    Garbade, J., Schubert, A., Rastan, A. J., Lenz, D., Walther, T., Gummert, J. F., et al. (2005). Fusion of bone marrow-derived stem cells with cardiomyocytes in a heterologous in vitro model. European Journal of Cardio-Thoracic Surgery, 28(5), 685–691.PubMedCrossRefGoogle Scholar
  42. 42.
    Jacot, J. G., Martin, J. C., & Hunt, D. L. (2010). Mechanobiology of cardiomyocyte development. Journal of Biomechanics, 43(1), 93–98.PubMedCrossRefGoogle Scholar
  43. 43.
    Cavalcanti-Adam, E., Tomakidi, P., Bezler, M., & Spatz, J. (2005). Geometric organization of the extracellular matrix in the control of integrin-mediated adhesion and cell function in osteoblasts. Progress in Orthodontics, 6(2), 232–237.PubMedGoogle Scholar
  44. 44.
    Li, T.-S., Komota, T., Ohshima, M., Qin, S.-L., Kubo, M., Ueda, K., et al. (2008). TGF-beta induces the differentiation of bone marrow stem cells into immature cardiomyocytes. Biochemical and Biophysical Research Communications, 366(4), 1074–1080.PubMedCrossRefGoogle Scholar
  45. 45.
    Bouten, C. V. C., Dankers, P. Y. W., Driessen-Mol, A., Pedron, S., Brizard, A. M. A., & Baaijens, F. P. T. (2011). Substrates for cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 63(4–5), 221–241.PubMedCrossRefGoogle Scholar
  46. 46.
    Schwartz, M. A., & DeSimone, D. W. (2008). Cell adhesion receptors in mechanotransduction. Current Opinion in Cell Biology, 20(5), 551–556.PubMedCrossRefGoogle Scholar
  47. 47.
    Yoneno, K., Ohno, S., Tanimoto, K., Honda, K., Tanaka, N., Doi, T., et al. (2005). Multidifferentiation potential of mesenchymal stem cells in three-dimensional collagen gel cultures. Journal of Biomedical Materials Research. Part A, 75(3), 733–741.PubMedCrossRefGoogle Scholar
  48. 48.
    Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.PubMedCrossRefGoogle Scholar
  49. 49.
    Kutschka, I., Chen, I. Y., Kofidis, T., Arai, T., von Degenfeld, G., Sheikh, A. Y., et al. (2006). Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation, 114(1 Suppl), I167–I173.PubMedGoogle Scholar
  50. 50.
    Bauman, L. (2004). Cosmoderm/cosmoplast (human bioengineered collagen) for the aging face. Facial Plastic Surgery, 20(2), 125–128.PubMedCrossRefGoogle Scholar
  51. 51.
    Geiger, M., Li, R. H., & Friess, W. (2003). Collagen sponges for bone regeneration with rhBMP-2. Advanced Drug Delivery Reviews, 55(12), 1613–1629.PubMedCrossRefGoogle Scholar
  52. 52.
    Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15(5), 378–386.PubMedCrossRefGoogle Scholar
  53. 53.
    Kofidis, T., de Bruin, J. L., Hoyt, G., Lebl, D. R., Tanaka, M., Yamane, T., et al. (2004). Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. The Journal of Thoracic and Cardiovascular Surgery, 128(4), 571–578.PubMedGoogle Scholar
  54. 54.
    Williams, C., Johnson, S. L., Robinson, P. S., & Tranquillo, R. T. (2006). Cell sourcing and culture conditions for fibrin-based valve constructs. Tissue Engineering, 12(6), 1489–1502.PubMedCrossRefGoogle Scholar
  55. 55.
    Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Chalabi, K., Sachweh, J. S., Demircan, L., et al. (2001). Fibrin gel—Advantages of a new scaffold in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 19(4), 424–430.PubMedCrossRefGoogle Scholar
  56. 56.
    Grassl, E. D., Oegema, T. R., & Tranquillo, R. T. (2003). A fibrin-based arterial media equivalent. Journal of Biomedical Materials Research. Part A, 66(3), 550–561.PubMedGoogle Scholar
  57. 57.
    Birla, R. K., Borschel, G. H., Dennis, R. G., & Brown, D. L. (2005). Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Engineering, 11(5–6), 803–813.PubMedCrossRefGoogle Scholar
  58. 58.
    Linnes, M. P., Ratner, B. D., & Giachelli, C. M. (2007). A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials, 28(35), 5298–5306.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang, B., Borazjani, A., Tahai, M., Curry, A. L. D. J., Simionescu, D. T., Guan, J., et al. (2010). Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. Journal of Biomedical Materials Research. Part A, 94(4), 1100–1110.PubMedGoogle Scholar
  60. 60.
    Singelyn, J. M., DeQuach, J. A., Seif-Naraghi, S. B., Littlefield, R. B., Schup-Magoffin, P. J., & Christman, K. L. (2009). Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials, 30(29), 5409–5416.PubMedCrossRefGoogle Scholar
  61. 61.
    Crapo, P. M., & Wang, Y. (2010). Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta Biomaterialia, 6(6), 2091–2096.PubMedCrossRefGoogle Scholar
  62. 62.
    Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A. F., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 Suppl), I135–I143.PubMedGoogle Scholar
  63. 63.
    Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.PubMedGoogle Scholar
  64. 64.
    Simpson, D. G., Terracio, L., Terracio, M., Price, R. L., Turner, D. C., & Borg, T. K. (1994). Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. Journal of Cellular Physiology, 161(1), 89–105.PubMedCrossRefGoogle Scholar
  65. 65.
    Allison, D. D., & Grande-Allen, K. J. (2006). Review. Hyaluronan: A powerful tissue engineering tool. Tissue Engineering, 12(8), 2131–2140.PubMedCrossRefGoogle Scholar
  66. 66.
    Ventura, C., Cantoni, S., Bianchi, F., Lionetti, V., Cavallini, C., Scarlata, I., et al. (2007). Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. Journal of Biological Chemistry, 282(19), 14243–14252.PubMedCrossRefGoogle Scholar
  67. 67.
    Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.PubMedCrossRefGoogle Scholar
  68. 68.
    Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000). Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation, 102(suppl III), III-56–III-61.Google Scholar
  69. 69.
    Xiang, Z., Liao, R., Kelly, M. S., & Spector, M. (2006). Collagen–GAG scaffolds grafted onto myocardial infarcts in a rat model: A delivery vehicle for mesenchymal stem cells. Tissue Engineering, 12(9), 2467–2478.PubMedCrossRefGoogle Scholar
  70. 70.
    Li, R.-K., Jia, Z.-Q., Weisel, R. D., Mickle, D. A. G., Choi, A., & Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation, 100(Suppl II), II-63–II-69.Google Scholar
  71. 71.
    Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4–5), 207–233.PubMedCrossRefGoogle Scholar
  72. 72.
    Gunatillake, P. A., & Adhikari, R. (2003). Biodegradable synthetic polymers for tissue engineering. European Cells & Materials, 5, 1–16.Google Scholar
  73. 73.
    Davis, M. E., Hsieh, P. C. H., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation Research, 97(1), 8–15.PubMedCrossRefGoogle Scholar
  74. 74.
    Kenar, H., Kose, G. T., & Hasirci, V. (2010). Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. Journal of Materials Science. Materials in Medicine, 21(3), 989–997.PubMedCrossRefGoogle Scholar
  75. 75.
    Park, H., Radisic, M., Lim, J. O., Chang, B. H., & Vunjak-Novakovic, G. (2005). A novel composite scaffold for cardiac tissue engineering. In Vitro Cellular & Developmental Biology—Animal, 41(7), 188–196.CrossRefGoogle Scholar
  76. 76.
    Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., et al. (1999). Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 64(5), 580–589.PubMedCrossRefGoogle Scholar
  77. 77.
    Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I. H. M., et al. (2007). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circulation Research, 100(2), 263–272.PubMedCrossRefGoogle Scholar
  78. 78.
    Engelmayr, G. C., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7(12), 1003–1010.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang, Y., Kim, Y. M., & Langer, R. (2003). In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research, 66, 192–197.PubMedCrossRefGoogle Scholar
  80. 80.
    Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., et al. (2006). Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Engineering, 12(8), 2077–2091.PubMedCrossRefGoogle Scholar
  81. 81.
    Shimizu, T. (2002). Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circulation Research, 90(3), 40e–48e.CrossRefGoogle Scholar
  82. 82.
    Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717–3723.PubMedCrossRefGoogle Scholar
  83. 83.
    Pego, A. P., Siebum, B., Van Luyn, M. J. A., Seijen, X. J. G. Y. V., Poot, A. A., Grijpma, D. W., et al. (2003). Preparation of degradable porous structures based on 1,3-trimethylene carbonate and d, l-lactide (co)polymers for heart tissue engineering. Tissue Engineering, 9(5), 981–994.PubMedCrossRefGoogle Scholar
  84. 84.
    Blumenthal, B., Golsong, P., Poppe, A., Heilmann, C., Schlensak, C., Beyersdorf, F., et al. (2010). Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: A promising tool to regenerate myocardial function. Artificial Organs, 34(2), E46–E54.PubMedCrossRefGoogle Scholar
  85. 85.
    Meng, J., Kong, H., Han, Z., Wang, C., Zhu, G., Xie, S., et al. (2009). Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. Journal of Biomedical Materials Research. Part A, 88(1), 105–116.PubMedCrossRefGoogle Scholar
  86. 86.
    Liao, I.-C., Liu, J. B., Bursac, N., & Leong, K. W. (2008). Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Experimental Cell Research, 1, 133–145.Google Scholar
  87. 87.
    Thomson, R., Wake, M., Yaszemski, M., & Mikos, A. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 122, 245–274.Google Scholar
  88. 88.
    Yang, S., Leong, K. F., Du, Z., & Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 7(6), 679–689.PubMedCrossRefGoogle Scholar
  89. 89.
    Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.PubMedCrossRefGoogle Scholar
  90. 90.
    Glowacki, J., & Mizuno, S. (2008). Collagen scaffolds for tissue engineering. Biopolymers, 89(5), 338–344.PubMedCrossRefGoogle Scholar
  91. 91.
    Shapiro, L., & Cohen, S. (1997). Novel alginate sponges for cell culture and transplantation. Biomaterials, 18(8), 583–590.PubMedCrossRefGoogle Scholar
  92. 92.
    Mikos, A. G., & Temenoff, J. S. (2000). Formation of highly porous biodegradable scaffolds for tissue engineering. Electronic Journal of Biotechnology, 3, 114–119.Google Scholar
  93. 93.
    Ott, H. C., Matthiesen, T. S., Goh, S.-K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221.PubMedCrossRefGoogle Scholar
  94. 94.
    Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5(1), 1–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Rosso, F., Giordano, A., Barbarisi, M., & Barbarisi, A. (2004). From cell–ECM interactions to tissue engineering. Journal of Cellular Physiology, 199(2), 174–180.PubMedCrossRefGoogle Scholar
  96. 96.
    Badylak, S. F., Taylor, D., & Uygun, K. (2011). Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering, 13, (in press).Google Scholar
  97. 97.
    Zhong, S., Teo, W. E., Zhu, X., Beuerman, R. W., Ramakrishna, S., Yue, L., et al. (2006). An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. Journal of Biomedical Materials Research. Part A, 79(3), 456–463.PubMedCrossRefGoogle Scholar
  98. 98.
    Blakeney, B. A., Tambralli, A., Anderson, J. M., Andukuri, A., Lim, D.-J., Dean, D. R., et al. (2011). Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials, 32(6), 1583–1590.PubMedCrossRefGoogle Scholar
  99. 99.
    Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., & Bowlin, G. L. (2009). Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 61(12), 1007–1019.PubMedCrossRefGoogle Scholar
  100. 100.
    Szentivanyi, A., Chakradeo, T., Zernetsch, H., & Glasmacher, B. (2011). Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. Advanced Drug Delivery Reviews, 63(4–5), 209–220.PubMedCrossRefGoogle Scholar
  101. 101.
    Zong, X., Bien, H., Chung, C.-Y., Yin, L., Fang, D., Hsiao, B. S., et al. (2005). Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 26(26), 5330–5338.PubMedCrossRefGoogle Scholar
  102. 102.
    Liu, H., Li, X., Zhou, G., Fan, H., & Fan, Y. (2011). Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials, 32(15), 3784–3793.PubMedCrossRefGoogle Scholar
  103. 103.
    McManus, M. C., Boland, E. D., Simpson, D. G., Barnes, C. P., & Bowlin, G. L. (2006). Electrospun fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model. Journal of Biomedical Materials Research. Part A, 81(2), 299–309.Google Scholar
  104. 104.
    Ma, Z., Kotaki, M., Inai, R., & Ramakrishna, S. (2005). Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering, 11(1–2), 101–109.PubMedCrossRefGoogle Scholar
  105. 105.
    Drury, J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24(24), 4337–4351.PubMedCrossRefGoogle Scholar
  106. 106.
    Nicodemus, G. D., & Bryant, S. J. (2008). Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering. Part B, Reviews, 14(2), 149–165.PubMedCrossRefGoogle Scholar
  107. 107.
    Bian, W., Liau, B., Badie, N., & Bursac, N. (2010). Mesoscopic hydrogel molding to control the 3D geometry of bioartifical muscle tissues. Nature Protocols, 4(10), 1522–1534.CrossRefGoogle Scholar
  108. 108.
    Birla, R. K., Huang, Y. C., & Dennis, R. G. (2007). Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Engineering, 13(9), 2239–2248.PubMedCrossRefGoogle Scholar
  109. 109.
    Lu, W.-N., Lü, S.-H., Wang, H.-B., Li, D.-X., Duan, C.-M., Liu, Z.-Q., et al. (2009). Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Engineering. Part A, 15(6), 1437–1447.PubMedCrossRefGoogle Scholar
  110. 110.
    Krebs, M. D., Sutter, K. A., Lin, A. S. P., Guldberg, R. E., & Alsberg, E. (2009). Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Acta Biomaterialia, 5(8), 2847–2859.PubMedCrossRefGoogle Scholar
  111. 111.
    Patterson, J., & Hubbell, J. A. (2010). Enhanced proteolytic degradation of molecularly engineered peg hydrogels in response to MMP-1 and MMP-2. Biomaterials, 31(30), 7836–7845.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang, G., Wang, X., Wang, Z., Zhang, J., & Suggs, L. (2006). A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Engineering, 12(1), 9–19.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang, G., Hu, Q., Braunlin, E. A., Suggs, L. J., & Zhang, J. (2008). Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Engineering. Part A, 14(6), 1025–1036.PubMedCrossRefGoogle Scholar
  114. 114.
    Ruel-Gariépy, E., & Leroux, J.-C. (2004). In situ-forming hydrogels—Review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 409–426.PubMedCrossRefGoogle Scholar
  115. 115.
    Ryan, E. (1999). Structural origins of fibrin clot rheology. Biophysical Journal, 77(5), 2813–2826.PubMedCrossRefGoogle Scholar
  116. 116.
    Jia, X., & Kiick, K. L. (2009). Hybrid multicomponent hydrogels for tissue engineering. Macromolecular Bioscience, 9(2), 140–156.PubMedCrossRefGoogle Scholar
  117. 117.
    Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869–1880.PubMedCrossRefGoogle Scholar
  118. 118.
    Akhyari, P., Kamiya, H., Haverich, A., Karck, M., & Lichtenberg, A. (2008). Myocardial tissue engineering: The extracellular matrix. European Journal of Cardio-Thoracic Surgery, 34(2), 229–241.PubMedCrossRefGoogle Scholar
  119. 119.
    Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86–100.PubMedCrossRefGoogle Scholar
  120. 120.
    Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., & Okano, T. (1999). Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. Journal of Biomedical Materials Research, 45(4), 355–362.PubMedCrossRefGoogle Scholar
  121. 121.
    Masuda, S., Shimizu, T., Yamato, M., & Okano, T. (2008). Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, 60(2), 277–285.PubMedCrossRefGoogle Scholar
  122. 122.
    Isenberg, B. C., Tsuda, Y., Williams, C., Shimizu, T., Yamato, M., Okano, T., et al. (2008). A thermoresponsive, microtexture substrate for cell sheet engineering with defined structural organization. Biomed Eng (NY), 29(17), 2565–2572.Google Scholar
  123. 123.
    Dike, L. E., Chen, C. S., Mrksich, M., Tien, J., Whitesides, G. M., & Ingber, D. E. (1999). Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cellular & Developmental Biology—Animal, 35(8), 441–448.CrossRefGoogle Scholar
  124. 124.
    Guo, D., Kassiri, Z., & Oudit, G. Y. (2011). Role of signaling pathways in the myocardial response to biomechanical stress and in mechanotransduction in the heart. In A. Kamkin & I. Kiseleva (Eds.), Mechanosensitivity and mechanotransduction (pp. 141–166). Dordrecht: Springer.Google Scholar
  125. 125.
    Oyamada, M., Kimura, H., Yoamada, Y., Miyamoto, A., Ohshika, H., & Mori, M. (1994). The expression, phosphorylation, and localization of connexin 43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes. Experimental Cell Research, 212, 351–358.PubMedCrossRefGoogle Scholar
  126. 126.
    Nichol, J. W., Engelmayr, G. C., Cheng, M., & Freed, L. E. (2008). Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression. Biochemical and Biophysical Research Communications, 373(3), 360–365.PubMedCrossRefGoogle Scholar
  127. 127.
    Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E. S., Kohane, D. S., Darland, D. C., et al. (2005). Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 23(7), 879–884.PubMedCrossRefGoogle Scholar
  128. 128.
    Morritt, A. N., Bortolotto, S. K., Dilley, R. J., Han, X., Kompa, A. R., McCombe, D., et al. (2007). Cardiac tissue engineering in an in vivo vascularized chamber. Circulation, 115(3), 353–360.PubMedCrossRefGoogle Scholar
  129. 129.
    Sasagawa, T., Shimizu, T., Sekiya, S., Haraguchi, Y., Yamato, M., Sawa, Y., et al. (2010). Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 31(7), 1646–1654.PubMedCrossRefGoogle Scholar
  130. 130.
    Chen, Q., Harding, S., Ali, N., Lyon, A., & Boccaccini, A. (2008). Biomaterials in cardiac tissue engineering: Ten years of research survey. Mater Sci Eng R Rep, 59(1–6), 1–37.CrossRefGoogle Scholar
  131. 131.
    Papadaki, M., Bursac, N., Langer, R., Merok, J., Vunjak-Novakovic, G., & Freed, L. E. (2001). Tissue engineering of functional cardiac muscle: Molecular, structural, and electrophysiological studies. American Journal of Physiology. Heart and Circulatory Physiology, 280(1), H168–H178.PubMedGoogle Scholar
  132. 132.
    Bilodeau, K., & Mantovani, D. (2006). Bioreactors for tissue engineering: Focus on mechanical constraints. A comparative review. Tissue Engineering, 12(8), 2367–2383.PubMedCrossRefGoogle Scholar
  133. 133.
    Radisic, M., Yang, L., Boublik, J., Cohen, R. J., Langer, R., Freed, L. E., et al. (2004). Medium perfusion enables engineering of compact and contractile cardiac tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286(2), H507–H516.PubMedCrossRefGoogle Scholar
  134. 134.
    Fink, C., Ergün, S., Kralisch, D., Remmers, U., Weil, J., & Eschenhagen, T. (2000). Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. The FASEB Journal, 14(5), 669–679.PubMedGoogle Scholar
  135. 135.
    Kraehenbuehl, T. P., Ferreira, L. S., Hayward, A. M., Nahrendorf, M., van der Vlies, A. J., Vasile, E., et al. (2010). Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials, 32(4), 1102–1109.PubMedCrossRefGoogle Scholar
  136. 136.
    Perets, A., Baruch, Y., Weisbuch, F., Shoshany, G., Neufeld, G., & Cohen, S. (2003). Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. Journal of Biomedical Materials Research. Part A, 65(4), 489–497.PubMedGoogle Scholar
  137. 137.
    Ferreira, L. S., Gerecht, S., Fuller, J., Shieh, H. F., Vunjak-Novakovic, G., & Langer, R. (2007). Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 28(17), 2706–2717.PubMedCrossRefGoogle Scholar
  138. 138.
    Sy, J. C., & Davis, M. E. (2010). Delivering regenerative cues to the heart: Cardiac drug delivery by microspheres and peptide nanofibers. Journal of Cardiovascular Translational Research, 3(5), 461–468.PubMedCrossRefGoogle Scholar
  139. 139.
    Sapir, Y., Kryukov, O., & Cohen, S. (2011). Integration of multiple cell–matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials, 32(7), 1838–1847.PubMedCrossRefGoogle Scholar
  140. 140.
    Spadaccio, C., Chello, M., Trombetta, M., Rainer, A., Toyoda, Y., & Genovese, J. A. (2009). Drug releasing systems in cardiovascular tissue engineering. Journal of Cellular and Molecular Medicine, 13(3), 422–439.PubMedCrossRefGoogle Scholar
  141. 141.
    Leor, J., Amsalem, Y., & Cohen, S. (2005). Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacology and Therapeutics, 105(2), 151–163.PubMedCrossRefGoogle Scholar
  142. 142.
    Chen, R. R., & Mooney, D. J. (2003). Polymeric growth factor delivery strategies for tissue engineering. Pharmaceutical Research, 20(8), 1103–1112.PubMedCrossRefGoogle Scholar
  143. 143.
    Epstein, S. E., Kornowski, R., Fuchs, S., & Dvorak, H. F. (2001). Angiogenesis therapy: Amidst the hype, the neglected potential for serious side effects. Circulation, 104, 115–119.PubMedGoogle Scholar
  144. 144.
    Christoforou, N., & Gearhart, J. D. (2007). Stem cells and their potential in cell-based cardiac therapies. Progress in Cardiovascular Diseases, 49(6), 396–413.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhang, S. J., Truskey, G. A., & Kraus, W. E. (2007). Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. American Journal of Physiology. Cell Physiology, 292(6), C2057–C2069.PubMedCrossRefGoogle Scholar
  146. 146.
    Rubbens, M. P., Driessen-Mol, A., Boerboom, R. A., Koppert, M. M. J., van Assen, H. C., TerHaar Romeny, B. M., et al. (2009). Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Annals of Biomedical Engineering, 37(7), 1263–1272.PubMedCrossRefGoogle Scholar
  147. 147.
    Akhyari, P., Fedak, P. W. M., Weisel, R. D., Lee, T.-Y. J., Mickle, D. A. G., & Li, R.-K. (2002). Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 106(suppl I), I-137–I-142.Google Scholar
  148. 148.
    Wille, J. J., Elson, E. L., & Okamoto, R. J. (2006). Cellular and matrix mechanics of bioartificial tissues during continuous cyclic stretch. Annals of Biomedical Engineering, 34(11), 1678–1690.PubMedCrossRefGoogle Scholar
  149. 149.
    Asnes, C. F., Marquez, J. P., Elson, E. L., & Wakatsuki, T. (2006). Reconstitution of the Frank–Starling mechanism in engineered heart tissues. Biophysical Journal, 91(5), 1800–1810.PubMedCrossRefGoogle Scholar
  150. 150.
    Tandon, N., Cannizzaro, C., Chao, P.-H. G., Maidhof, R., Ting, H., Au, H., et al. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173.PubMedCrossRefGoogle Scholar
  151. 151.
    Tandon, N., Marsano, A., Maidhof, R., Wan, L., Park, H., & Vunjak-Novakovic, G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(6), e115–e125.PubMedCrossRefGoogle Scholar
  152. 152.
    Kavahagh, K. M., Duff, H. J., Clark, R., Robinson, K. V., Giles, W. R., & Wyse, D. G. (1990). Monophasic versus biphasic cardiac stimulation: Mechanism of decreased energy requirements. Pacing and Clinical Electrophysiology, 13(10), 1268–1276.CrossRefGoogle Scholar
  153. 153.
    Huang, G., Pashmforoush, M., Chung, B., & Saxon, L. A. (2010). The role of cardiac electrophysiology in myocardial regenerative stem cell therapy. Journal of Cardiovascular and Translational Research, 4, 61–65.CrossRefGoogle Scholar
  154. 154.
    Wikswo, J. P., Lin, S. F., & Abbas, R. A. (1995). Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation. Biophysical Journal, 69(6), 2195–2210.PubMedCrossRefGoogle Scholar
  155. 155.
    McDonough, P. M., & Glembotski, C. C. (1992). Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. Biochemistry, 267(17), 11665–11668.Google Scholar
  156. 156.
    Zimmermann, W.-H., Didié, M., Döker, S., Melnychenko, I., Naito, H., Rogge, C., et al. (2006). Heart muscle engineering: An update on cardiac muscle replacement therapy. Cardiovascular Research, 71(3), 419–429.PubMedCrossRefGoogle Scholar
  157. 157.
    Iwakura, A., Fujita, M., Kataoka, K., Tambara, K., Sakakibara, Y., Komeda, M., et al. (2003). Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart and Vessels, 18(2), 93–99.PubMedCrossRefGoogle Scholar
  158. 158.
    Davis, M. E., Hsieh, P. C. H., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8155–8160.PubMedCrossRefGoogle Scholar
  159. 159.
    Seif-Naraghi, S. B., Salvatore, M. A., Schup-Magoffin, P. J., Hu, D. P., & Christman, K. L. (2010). Design and characterization of an injectable pericardial matrix gel: A potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering. Part A, 16(6), 2017–2027.PubMedCrossRefGoogle Scholar
  160. 160.
    Gaudette, G. R., & Cohen, I. S. (2006). Cardiac regeneration: Materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation, 114(24), 2575–2577.PubMedCrossRefGoogle Scholar
  161. 161.
    Mian, R., Morrison, W. A., Hurley, J. V., Penington, A. J., Romeo, R., Tanaka, Y., et al. (2000). Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Engineering, 6(6), 595–603.PubMedCrossRefGoogle Scholar
  162. 162.
    Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14990–14995.PubMedCrossRefGoogle Scholar
  163. 163.
    Kelm, J. M., & Fussenegger, M. (2010). Scaffold-free cell delivery for use in regenerative medicine. Advanced Drug Delivery Reviews, 62(7–8), 753–764.PubMedCrossRefGoogle Scholar
  164. 164.
    Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., et al. (2006). Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. The FASEB Journal, 20(6), 708–710.PubMedGoogle Scholar
  165. 165.
    Giraud, M.-N., Ayuni, E., Cook, S., Siepe, M., Carrel, T. P., & Tevaearai, H. T. (2008). Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artificial Organs, 32(9), 692–700.PubMedCrossRefGoogle Scholar
  166. 166.
    Dimmeler, S., & Zeiher, A. M. (2009). Cell therapy of acute myocardial infarction: Open questions. Cardiology, 113(3), 155–160.PubMedCrossRefGoogle Scholar
  167. 167.
    Haider, H. K., & Ashraf, M. (2010). Preconditioning and stem cell survival. Journal of Cardiovascular Translational Research, 3(2), 89–102.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTufts UniversityMedfordUSA

Personalised recommendations